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Abstract

We consider a class of stochastic partial differential equations arising as a model for
amorphous thin film growth. Using a spectral Galerkin method, we verify the existence
of stationary mild solutions, although the specific nature of the nonlinearity prevents
us from showing the uniqueness of the solutions as well as their boundedness (in time).

1 Introduction

This paper shows the existence of a stationary solution for a stochastic partial differ-
ential equation (SPDE), where the solutions may not form a Markov semigroup due to
the lack of uniqueness. We consider the family of equations

0�1/2436570+89 2;:=<>0.?9 2@5A0.?9 ( 0 9 2 )
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( EGFIH ) ,
<@J

R , (1.1)

for a real-valued scalar
2

( H
FKE ) with HMLON and E J [ NPFRQ ], subject to suitable boundary
conditions (e.g. periodic or Neumann type). The symbol

C
denotes a noise process

which should be thought of as the generalized derivative of some Wiener process to be
specified later on.

Equations of the type (1.1) arise in the growth of thin films (see e.g. [RML S 00,
SP94, BS95]). The function

2
( H
F�T ) describes the graph of a surface at time HULVN .

Usually these equations are equipped with a lot of physical parameters, which we set toW
for simplicity. In some models an additional additive nonlinear term (

0 9 2 )
?

appears.
We can treat that case too, but the analysis is more involved without contributing much
to the general understanding of the situation, so we do not present it.

It is easy to verify that there exists a value
<�XMY N such that if

<ZY[<�X
, the equations

under consideration present a linear instability. We will therefore distinguish in the
sequel the stable case (

< L <�X
) from the unstable case (

<6\]<�X
). This instability

is responsible for the formation of hills, which is frequently seen in experiments (see
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e.g. [MMS99] and the references therein). On the other hand we have a quadratic
nonlinearity that compensates this instability. Unfortunately, this nonlinearity makes
it difficult to derive uniform bounds on the solution. Moreover, it is an open problem
how to establish bounds in case of a two-dimensional square, which is obviously a more
realistic model than the one-dimensional case we treat in this paper. This scenario is
similar to the Kuramoto-Sivashinsky equation, where there are no results for truly two-
dimensional domains.

One very helpful tool in the analysis is the conservation of mass:

Remark 1.1 The quantity
�

(
2

) � 3����� 2 ( E ) ��E decouples from the rest of the equa-
tion. Therefore, we can assume without loss of generality that

�	� 2
( H ) 
�� N for a solu-

tion of (1.1). The various Sobolev spaces appearing in the sequel should be thought of
as the orthogonal complement to the constant function

W
of the usual spaces.

The local existence of unique solutions to equations of the type (1.1) is standard
for sufficiently smooth initial conditions. But the existence of global solutions is much
more complicated, and was shown in [BG02] or [BGR02] using a spectral Galerkin
method. Nevertheless the question of uniqueness of global solutions is still open, even
in the deterministic case, as it is out of reach to show enough regularity. Therefore the
equation does not necessarily generate a Markov semigroup, and the standard theory
for invariant measures (cf. [DPZ96]) does not apply.

We show in this paper that there exists nevertheless an “invariant measure” for
(1.1). To be more precise, we construct a stationary solution  2 ( H ) F H J R � such that
the distribution �

1
� 3�� � 2 ( H ) 
 1 of

2
( H ) is constant in time.

Our concept of solutions is a martingale solution of the corresponding mild for-
mulation. Hence, we allow a change of the underlying probability space and consider
solutions not of the SPDE, but of the corresponding variation of constants formula.
Since we use spectral Galerkin methods, our approach is similar to previous results
(see [FG95] or [CG94]) for the stochastic Navier-Stokes equation. One of the major
differences is that we are not able to use the theory of Markov semigroups. Moreover,
we were not able to get any uniform bound (in H ) on the distribution of solutions when
the driving force

C
is a space-time white noise. We are able to establish such a bound

only for stationary solutions. Therefore, we will construct the stationary process
2

as a
limit of the unique invariant stationary solutions to the Galerkin approximations.

The paper is organized as follows. In Section 2, we introduce the spectral Galerkin
approximation and present our main result. The next Section 3 presents compactness
results and the proof of the main result. In Sections 4 and 5, we will give a-priori
estimates for the solutions. The final Section 6 contains technical results.
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1The symbol � ( � ) will always denote the law of the random variable � .
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2 Notation and formulation of the main result

Define the space L
? � 3  � J L

?
([ NPFKQ ]) � ���� � ( E ) ��E 3 N � with standard L

?
-norm � T�� .

We define � as the linear self-adjoint operator in L
?

formally given by

� � 3 570+89 :=<>0.?9 ,

where the domain of definition � ( � ) consists of all functions
� J�� 8

([ NPFRQ ]) satisfying�
(
�

)
3 N and boundary conditions given by the equation. We will write

� 8 3 � ( � )
for short. Moreover, it is well-known that � generates an analytic semigroup ��

1
	
� 1�� � ,

and we use the fractional powers of � to define the standard fractional Sobolev spaces��
for ���[N with dual spaces

����
.

In the sequel we will need spaces of functions on the whole real line with values in
Sobolev spaces. We recall the definition of the space � (R F �� ), which is given as the set
of all functions such that for any � Y�� , the restriction to [ �+F � ] is in � ([ �+F � ] F �� ). We
say that

���
converges to

�
in � (R F �� ) if and only if

�������
in any � ([ �+F � ] F �� ) with

� Y � equipped with the standard maximum norm. We define the spaces L
?
loc(R F �� )

in an analogous way.
We write ���! �"!"# N for a complete orthonormal set in L

?
of eigenvectors of � and

denote by $&% the orthogonal projector onto the subspace of L
?

spanned by �('�F*)+)*)&F,�"% .
Then the - th spectral Galerkin approximations

2 % of (1.1) is given by the solution of
0 1/2 % 3 � 2 % : $&% 0 ?9 ( 0 9 2 % )

? : $.%0/1 , (2.1)

where � can be interpreted either as an -324- -matrix or as a differential operator acting
on the range of $ % . When considering (2.1), we will always take initial conditions in
the range of $ % . In this equation, /1 is the generalized time-derivative of a two-sided
cylindrical Wiener process

1
on L

?
with covariance operator 5 . (See [DPZ92] for the

definition of a cylindrical Wiener process.) We make the following assumption on 5 :

Assumption 2.1 There exist positive numbers 6 ! and a constant 7 such that

5�� ! 3 6 ! � ! and 8 6 ! 8 \ 7 ,

for all 94L=N .

Notice that this assumption covers the case of space-time white noise ( 6:! 3 W
). The

assumption that 5 and � have the same eigenvectors implies that we restrict ourselves
to translationally invariant noise, which is also called homogeneous in the physics lit-
erature. This assumption is crucial to verify technical results like Lemma 6.1.

Since (2.1) is actually a stochastic differential equation in R % with locally Lipschitz
coefficients, it is well-known (see e.g. [Has80] or [Arn74]) that it possesses (locally) a
strong solution. Standard arguments allow to show the following proposition, the proof
of which will be given in Section 4 below.

Proposition 2.2 For every -;� W
and any initial condition in $ % L

?
, Equation (2.1)

possesses a unique global strong solution. Furthermore, the law of this solution con-
verges in variation norm towards a unique invariant measure < % which has bounded
moments of second order.
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Consider processes  2 % ( H ) � 1 # R given as stationary solutions of the - th spectral
Galerkin approximation corresponding to the invariant measure <�% . Hence,

2 % satis-
fies the following stochastic ODE.

0 1 2 % 3 � 2 % : $ % 0 ?9 (
0 9 2 % )

? : /1 % , (2.2)

where
1 % is given by

1 % ( H ) 3 � % !�� ' 6 ! � !�� ! ( H ) with the  � ! � !�# N being a family
of independent two-sided standard Brownian motions defined on the probability space
underlying

1
. Since

2 % is stationary, we have
� � 2 % ( H ) 
 � <&% for any H J R. By

� [
��� �

]% we denote the path measure of  2 % ( H ) � 1 # [ ��� � ], and by � % the measure for the
whole process

2 % in path space.
It is well-known (see e.g. [DPZ92]) that, for any pair H L=H � , the process

2 % satisfies
(with probability

W
) the following variation of constants formula:

2 % ( H ) 3 � (
1 � 1
	 )
	 2 % ( H � ) :�� 1

1
	 0.?9 � ( 1 �  ) 	 $ % (
0 9 2 % ( � )) ? � � :�� 11
	 � ( 1 �� ) 	 � 1 % ( � ) )

(2.3)
Again, we consider the differential operators either as operators on the range of $�% or
as - 2 - -matrices.

As our solutions of (1.1) do not have enough regularity, we will focus on mild
solutions, which are solutions of such integral equations. Our main result is

Theorem 2.3 Consider equation (1.1) with periodic or Neumann b.c. in the stable and
only Neumann b.c. in the unstable case. Then the family of measures  <�% �"% # N given
by Proposition 2.2 is tight on L

?
.

Furthermore, for any of its accumulation points < , there exists a probability space
( � F�� F�� ), a two-sided 5 -Wiener process 1 , and a stationary stochastic process
 2 ( H ) � 1 # R with

2 J � (R F ����� ) � L
?
loc(R F � ' ), such that

�
(
2

( H )) � < for every H J R,
and such that

2
( H ) 3 � (

1 � 1
	 ) 	 2 ( H � ) :�� 11
	 0.?9 � ( 1 �  ) 	 (
0 9 2 ( � )) ? � � :�� 11
	 � ( 1 �  ) 	 � 1 ( � ) (2.4)

holds for all H �=H � , � -almost surely.

We will not focus on optimal regularity, but we could slightly improve the regularity
of
2

analogous to Corollary 3.2 and 3.3 of [BG02]. Moreover, we could prove that
support of the measure < is concentrated in a smaller space than L

?
, but we are far

from getting enough regularity to prove pathwise uniqueness.
In the stable case, it is easily possible to prove an analog of Theorem 2.3 with

Dirichlet boundary conditions, but we do not enter into details here.

3 Proof of the main result

The main step of the proof of Theorem 2.3 is a bound on the logarithmic moments of
< % that does not depend on - . The main technical difficulty is that Itô’s formula can
not be applied to (1.1) since the covariance of our noise is not necessarily trace class.
We postpone the proof of Theorem 3.1 below to sections 4 and 5.
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Theorem 3.1 Let <&% be the measure on L
?

invariant for the - th Galerkin approxi-
mation. Then, there exists a constant 7 independent of - such that

�
L
� log

� W : � 2 � ?����� <.% ( � 2 )
\ 7 ,

uniformly in - .

Using this result, we turn to the

Proof of Theorem 2.3. The tightness of the family  < % � follows immediately from
Theorem 3.1 and the compact embedding of � ' into L

?
. We choose any accumulation

point < of  <&% � and assume without loss of generality that < % converges weakly to
< in the space of Borel measures on L

?
. Denote by � % the law of the (unique in law)

stationary process associated to the invariant measure <�% by Proposition 2.2.
In order to construct the process

2
appearing in the statement, we first show that

the family of measures  � % � is tight (it turns out that it is so on the space � (R F � ��� ) �
L
?
loc(R F � ' )), and then verify that the limiting process obtained by the usual Prokhorov-

Skohorod argument really satisfies the integral equation (2.4).
To prove the tightness of the family  � % � , we consider

2 % as a solution of (2.3)
with initial condition

2 % ( N ) distributed according to < % . We denote by
1 %	 ( H ) the

stochastic convolution given by

1 %	
( H ) 3 � 1

� �
	

(
1 �  ) � 1 % ( � ) ,

and we define ��% ( H ) � 3 2 % ( H ) 5 1 %	 ( H ). The reason is that the stochastic process � %
exhibits trajectories with much more time-regularity than

2 % . The process ��% is then
pathwise a strong solution of the random PDE given by

0 1 � % 3 ��� % 5 0 ?9 $ % (
0 9 � % : 0 9 1 %	 )

?
, � % ( N ) 3 2 % ( N ) ) (3.1)

We will need the following technical lemma, the proof of which is postponed to
sections 4 and 5.

Lemma 3.2 Fix 	�F�
 L[N and assume that there exists � L N such that

P
� � 2 % ( N ) � L� 
 Y 	 for all - J

N.

Assume furthermore that
2

( N ) is independent of the Wiener increments for positive
times. Then there exists �6L[N independent of - such that

P
� ����% � � (

��� � �
L
�

)
: ����% � L� ( ��� � � � � ) L � � Y 	 for all - J

N )
Using this result, we verify the tightness of  � [

��� �
]% � on the space � ( NPF�
 F ����� ) �

L
?
( NPF�
7F � ' ) in a similar way as in [BG02, Section 5], so we only briefly sketch the

main ideas here.
Given 	6L N , we look for a compact set ��� such that � [

��� �
]% ( ��� ) is bounded

from below by
W 5 	 for all - . Combining Theorem 3.1 with Lemma 3.2, there ex-

ists � such that, with probability larger than
W 5 	 , � % lies in a ball of radius � of
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� ( N F�
7F L? ) � L
?
( NPF�
 F � ? ) and ���(% ( N ) � \ � . Furthermore,

1 %	 � 1 	 in � ( NPF�
7F � ' )
� -a.s. Using standard compactness results (e.g. [Gat93, Proposition 1] or [DPZ92,
Proposition 8.4]) for the integral operator appearing in (2.3), we can check that the
above bounds imply the existence of a compact subset � '� of 7 ( NPF�
7F ����� ) such that
� % J � '� with probability larger than

W 5 	 . Since � % is also bounded in L
?
( NPF�
 F � ? )

with high probability, we obtain by an interpolation theorem (e.g. [VF88, Theorem
IV.4.1]) the existence of a compact set � ?� � L

?
( N F�
7F � ' ) such that � % J � ?� with

probability larger than
W 5 	 .

Hence,  ����� �"% # N is tight on the space � ( N F�
7F ����� ) � L
?
( N F�
7F � ' ). By the defini-

tion of the projection $ % , we readily obtain the convergence of
1 %	 3 $ % 1 	 � 1 	

in � ( NPF�
7F � ' ), as
1 	

is already in that space. Combining both arguments, we thus ob-
tain the tightness of the family  � [

��� �
]% �"% # N on the space � ( N F�
7F ����� ) � L

?
( N F�
7F � ' ).

Since this holds for arbitrary time intervals, it is straightforward to extend this to the
whole line, so  � % � is tight on � (R F ��� � ) � L

?
loc(R F � ' ). We call ��� one of its limit-

ing measures and we obtain a subsequence  �.%�� � that converges weakly to ��� in the
abovementioned space.

Now we can use Skohorod’s Theorem to obtain a new probability space ( � F � F � ),
a 5 -Wiener process 1 on that space, stochastic processes 2 ! with laws � ! 3 � %	�
solving (2.3) with $ % � 1 instead of

1 % , as well as a stochastic process 2 with prob-
ability distribution

�
( 2 )

3 ��� such that 2 ! � 2 � -a.s. in L
?
loc(R F � ' ) ��� (R F ��� � ).

Hence, 2 ! ( H ) � 2 ( H ) in
��� �

, and additionally we have � 1 3 < for all H J R by our
initial choice of a subsequence.

To show that 2 is actually stationary, we first remark that 2 ! � 2 in � (R F ��� � ).
Hence, for any choice of ( H '�F+)*)+)&FKH�
 )

J
R 
 we readily obtain in the weak convergence

of measures on (
�����

) 
 that
�

(( 2 ! ( H,' ) F+)*)+)�F 2 ! ( H�
 ))
� �

(( 2 ( H ' ) F+)+)*)�F 2 ( H�
 )). Since2 ! is stationary, this immediately implies the stationarity of 2 .
Using the � -a.s. convergence as in [BG02, Theorem 3.1], it is technical but straight-

forward to verify that 2 is actually a solution of (2.4) with respect to 1 . This completes
the proof of Theorem 2.3.

4 The stable case

This section provides the postponed proofs of the previous sections in the case of
strictly negative � . We will discuss the necessary changes in order to cover the un-
stable case in Section 5 below. We start with the

Proof of Proposition 2.2. The claim follows from [DPZ96, Has80] if we can show that
there exists a constant 7 such that E � 2 % ( H ) � ? \ 7 uniformly in H . By Itô’s formula,
we have

� � 2 % � ? 3��� 2 % F,� 2 %�� ��H :���� 2 % F 0.?9 ( 0 9 2 % )
? � ��H :����(2 % F � 1 % ( H ) � :

%�
! � ' 6

? ! ��H )
(4.1)

Since
� 2 % F 0 ?9 ( 0 9 2 % )

? � 3 N and � is a strictly negative definite operator, the claim fol-
lows after integrating ( � ) W ) on both sides, taking expectations, and applying Gronwall’s
formula. Notice that the bound on the second momenta obtained with this procedure
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diverges with - and it remains an open problem to establish a bound independent of
- for arbitrary solutions.

To prove Theorem 3.1 for the stable case, we first verify an L
?
-bound.

Theorem 4.1 Let < % be the invariant measure on L
?

for the - th Galerkin approxi-
mation. There exists a constant 7 such that�

L
� log

� W : � 2 � ? � < % ( � 2 )
\ 7 ,

for all - .

Proof. By (3.1), the L
?
-norm ���(% ( H ) � ? satisfies

0�1 � ��% � ? 3 ��� ��% F,����%�� 5 ��� ��% F 0+?9 (
0 9 ��% :D0 9 1 %	 )

? �
3 ��� � % F,��� % � 5 ��� �� 0 9 ( 0 9 � % )

? ��E 5 � � �� 0 ?9 � % 0 9 � % 0 9 1 %	 ��E
5 � � �

�
0 ?9 ��% (

0 9 1 %	 )
? ��E (4.2)

\ 5 � 0 ?9 � % � ? 5 < � 0 9 � % � ? : � � 0 ?9 � % �:� 0 9 � % �:� 0 9 1 %	 � �:�� � 0.?9 ��% �:� 0 9 1 %	 � ?8
\ 5 W

� �
0 ?9 ��% � ? 5 < � 0 9 ��%�� ? :�� � ��% � ? � 0 9 1 %	 � 8 � : � � 0 9 1 %	 � 88 )

Using the Poincaré inequality and the fact that we consider only solutions with vanish-
ing mean, we see that there exists a positive constant 6 independent of - (but depen-
ding on Q ) such that

0 1 � ��% � ? \ 5 6 ����% � ?B:�� � ��% � ? � 0 9 1 %	 � 8 � : � � 0 9 1 %	 � 88 )
We define now for any interval [ ��FIH ] the quantity

1 %
[  � 1 ] by

1 %
[  � 1 ] 3 � 1


� � 0 9 1 %	 ( � ) � 8 � ��� )

As a consequence, we have the following a-priori estimate on the norm of � % :

����% ( H ) � ? \ � ���
1
S�� �[

	
	 
 ] ����% ( N ) � ? : 7 �

1

� �
��� (

1 �  ) S�� �[ � 	 
 ] � W : � 0 9 1 %	 ( � ) � 88 � � �
\ � ���

1
S�� �[

	
	 
 ] ����% ( N ) � ? : 7 � � �[

	
	 
 ] ( 1 %[ ��� 1 ] : H ) ) (4.3)

Since
2 % 3 � % : 1 %	 and

1 %	 ( N )
3 N we obtain for some 	;L N fixed later on:

� 2 % ( H ) � ? \ (
W : 	 ) � ��% ( H ) � ? : 7�� 1 %	 ( H ) � ?

\
(
W : 	 ) � ���

1
S�� �[

	
	 
 ] � 2 % ( N ) � ? : 7 � � �[

	
	 
 ] ( 1 %[ ��� 1 ] : H ) : 7�� 1 %	 ( H ) � ? )
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Note that the constants may depend on 	 .
The problem at this point is that the exponential moment of the random variable1 %

[
��� 1

] is infinite. We therefore take logarithms on both sides, yielding

log
� W : � 2 % ( H ) � ? � \ log

�
(
W : 	 ) � ���

1
S � �[

	
	 
 ] � W : � 2 % ( N ) � ? �

: 7 � � �[
	
	 
 ] � 1 %

[
��� 1

]
: H � : 7�� 1 %	 ( H ) � ? : W�� ) (4.4)

Using Lemma 6.1 it is now easy to verify that we can apply Lemma 6.4 (with
a constant � independent of - ) to the right-hand side of (4.4), where we take the
conditional expectation w.r.t.

2 % ( N ). Hence,

E
� �

log
� W : � 2 % ( H ) � ? � � ?���� 2 % ( N )

� \ �
log

� W : � 2 % ( N ) � ? � �
?

(4.5)
:�� � 	 : log(

W : 	 ) 5 6!H : E
1 %

[
��� 1

]
� T log

� W : � 2 % ( N ) � ? � : 7 ,

for some constant 7 depending on 	 and on the parameters of the problem, but not on
- .

At this point, we choose first H sufficiently small such that

E
1 %

[
��� 1

]
\ 6GH� )

This can be done uniformly in - by Lemma 6.1. Then fix 	 so small such that

	 : log(
W : 	 ) \ 6GH� )

Taking expectations on both sides of (4.5) and using the stationarity of
2 % ( H ), we have

E log
� W : � 2 % ( N ) � ? � \ 76GH

for fixed H sufficiently small, therefore concluding the proof of Theorem 4.1.

Remark 4.2 Theorem 4.1 establishes only a uniform bound (in H ) for stationary so-
lutions of our problem. Estimates like (4.4) or (4.5) are not sufficient to get uniform
bounds for arbitrary solutions, and this question remains open.

Let us now turn to the

Proof of Theorem 3.1. Using (4.2) we obtain after integration

� '
� �

0.?9 ��% ( H ) � ? ��H \ 7 � '� � ��% ( H ) � ? ( W : � 0 9 1 %	 ( H ) � 8 � ) ��H (4.6)

: 7 � '� � 0 9 1 %	 ( H ) � 88 ��H : 7�� ��% ( N ) � ? )
Using Young’s inequality and the Sobolev embedding of

� ' into L
�

, we have the
bound

� 2 % � ?� � \ 7�� 0.?9 � % � ? : 7�� 0 9 1 %	 � 8 � : 7 )



THE STABLE CASE 9

This yields

� '
� �

2 % ( H ) � ?� � ��H \ 7 � '� ��� % ( H ) � ? � W : � 0 9 1 %	 ( H ) � 8 � � ��H
: 7 � '� � 0 9 1 %	 ( H ) � 88 ��H : 7 : 7�� 2 % ( N ) � ?

\ 7 � '� �
� ���

1
S � �[

	
	 
 ] � 2 % ( N ) � ? : � � �[

	
	 
 ] � 1 %

[
��� 1

]
: H � �

2 � W : � 0 9 1 %	 ( H ) � 8 � � ��H : 7 � '� � 0 9 1 %	 ( H ) � 88 ��H : 7 : 7�� 2 % ( N ) � ?
\ 7 � � � � �[

	
	 � ] : W � � 2 % ( N ) � ? : � � �[

	
	 � ] � 1 %

[
��� ' ] : W � : W � � W : 1 %

[
��� ' ] � ,

where we used (4.3). Using Theorem 4.1 and Lemma 6.1, we immediately obtain

E log

� � '
� �

2 % ( H ) � ?� � ��H : W�� \ 7 )
Finally, Jensen’s inequality and the stationarity of

2 % yield

E log
� � 2 % ( N ) � ?� � : W � 3 E

� '
� log

� � 2 % ( H ) � ?� � : W � ��H
\

E log

� � '
� �

2 % ( H ) � ?� � ��H : W � \ 7 ,

concluding the proof of Theorem 3.1.

We now turn to the proof of Lemma 3.2. This proof will not use the strict negativity
of � and is thus still valid in the unstable case. Since we need this bound only for a
fixed time interval [ NPF�
 ], we can bound the terms in a rather crude way.

Proof of Lemma 3.2. Define

1 %� � 3 sup1 # [ ��� � ]
� 0 9 1 %	 ( H ) � 8 � )

Using the factorization method and Sobolev embedding it is straightforward to check
that E

1 %� Y 7 uniformly in - . This result is established completely analogous to
[BMPS01, Lemma 5.1]. Note that the uniformity in - is not trivial, as the family
�$ % �"% # N is not uniformly bounded as operators on Q � or � � .

Using this and the assumption on � 2 % ( N ) � , we see that for every 	 L[N there is an
� L[N such that

P
� 1 %� Y � and � 2 % ( N ) � Y � � L W 5 	 ) (4.7)

Combining (4.7) and (4.3), we see that with probability larger than
W 5 	 one has

� � % ( H ) � ? \ � � �� ��� % ( N ) � ? : 7 � � �� (
1 %� : 
 )
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\ � � � ?B: 7 � � ( � : 
 )
3 � � � ,

for any H J [ NPF�
 ]. Using (4.6) in the same way, we get

� �
� �

0.?9 ��% ( H ) � ? ��H \ 7�����% ( N ) � ? : 7 � �
� ����% ( H ) � ? ( 1 %� : W

) ��H : 7 
 1 %�
\ 7 ( � : 
 � � ( � : W

)
: 
 � ) ,

with probability larger than
W 5 	 , thus concluding the proof of Lemma 3.2.

5 The unstable case

This section deals with the case where the operator � is no longer strictly negative
definite. In order to treat this case, we make use of a trick that was used in [NST85,
CEES93] to get bounds on the deterministic Kuramoto-Sivashinsky equation. It turns
out that the present model is sufficiently close to that equation to make that trick go
through. Nevertheless, we can only treat Neumann boundary conditions (which is the
same as considering the restriction on [ N FKQ ] of functions that are even and periodic
with period

� Q ). In a similar way we can treat also Dirichlet boundary conditions, but
periodic boundary conditions are still open.

Most of the proofs are similar to the previous section, so we will only state the main
differences. Instead of defining � % as previously, we define � % by

��% ( H ) 3 2 % ( H ) 5 1 %	 ( H ) 5�� % , (5.1)

where
� % 3 $.% � for some function

�
to be chosen later and

1 %	 is the stochastic
convolution defined in the previous section. The stochastic process � % then satisfies
the following random PDE:

0 1 � % 3 ��� % : � � % 5 $ % 0.?9 (
0 9 � % :D0 9 1 %	 :D0 9 $ % � )

? ) (5.2)

We can rewrite this as
0 1 ��% 3 ����% 5 0 ?9 ( 0 9 ��% : 0 9 1 %	 )

? 5 0 ?9 ( 0 9 $.% � )
? : � � 5 ��0 ?9 ( 0 9 �40 9 1 	 ) ,

where the operator � is defined as

� � 3 ��� 5 ��0.?9 ( 0 9 �40 9 � ) )
Using exactly the same technique as in the previous section, we see that in order to
get uniform bounds on the Galerkin approximations of � , it suffices to find a smooth
function

�
such that � � F � � � \ 5�� � 0 ?9 ��� ? (5.3)

for some constant
� L N . Using this function, it is easy to verify that the assertions of

Proposition 2.2 and Theorems 3.1 and 4.1 hold in the unstable case, too. The only major
changes appear in the values of the constants, which do now depend on the choice of
�

. We will therefore not go through the proofs of these assertions for the unstable case,
but we will sketch how to find a function

�
such that � is strictly negative definite.
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Integrating by parts, we see that the bilinear form (5.3) can be written as
� � F � � � 3 5 � 0.?9 � � ? 5 < � 0 9 ��� ? 5 � 0 9 � F ( 0.?9 � )

0 9 � � , (5.4)

where
<

is negative. The problem is therefore reduced to finding a smooth periodic
function

�
such that the Schrödinger operator��� 3 5 '? 0 ?9 : 0 ?9 � ( E ) ,

with Dirichlet boundary conditions satisfies
� 2 F � � 2 �4� 8 < 8 � 2 � ? for all functions

2
in

its domain. The idea appearing in [NST85] is to choose
�

such that, away from the
boundary,

0 ?9 � is for all practical purposes constant and sufficiently large (say equal
to about

� 8 < 8 ). The problem is that, in order for (5.2) to hold,
�

has to belong to
� ( � ) and must therefore satisfy the same boundary conditions as

2
. As a consequence0 ?9 � must satisfy

� �� 0 ?9 � ( � ) ��E 3 N , which is of course impossible for a constant
(non-zero) function. Looking at (5.4), we notice that

0 ?9 � ( E )
3 � 8 < 8 � W 5�� ( E ) 
 would

formally fit our needs, since the delta-peak is integrated against
0 9 � , which vanishes

at the boundaries, due to the Neumann conditions. The function
�

obtained this way
does of course not belong to � ( � ), so we look for an approximation of it which is more
regular.

Since
�

satisfies Neumann boundary conditions, it is natural to write it as

�
( E )

3 � 8 < 8
��
� � ' �

�
cos

� ���	�
Q

� ) (5.5)

(The sum starts at
W

because we are interested only in functions with vanishing mean.)
If we choose � � 3 �
� � ? , we see that

0 ?9 � is given by
0 ?9 � ( E )

3 � 8 < 8 � W 5�� ( E ) 
 , which
is what we would like to approximate. In order to get a regular function, we define

� � � 3� ? � � 3�� � for
�A\ �
�

� ,N for
� L �
� � , (5.6)

where
�
� is some (sufficiently large) constant to be fixed later on. With this definition,

we have:

Proposition 5.1 For every Q7F 76L N , there exists a value
�
� L N such that the quadra-

tic form
���

with
�

defined as in (5.5) and (5.6), satisfies

� �
�
2

( E )
����� 2 
 ( E ) ��E � 7�� 2 � ? ,

for every
2

in the domain of
���

.

Remark 5.2 Notice that the function
�

defined by (5.5) and (5.6) is actually analytic,
so the expressions appearing in (5.2) and containing

�
can all be bounded uniformly

in - (not in
�
� of course, but

�
� is chosen independently of - ).

Remark 5.3 As in [CEES93] we could choose a slow decay of
� �

for
� L ���

� to
optimize the Q -dependence of our bound, but we neglected this for simplicity.
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Proof. Applying the arguments of [CEES93, Prop. 2.1], we see that it suffices to show
that the quantity

� � 3 �
!�� 
 � �

8 � ! S 
 5 � ! � 
 8 ?� ! � 
 , with
� � 3 6 � ? , 6 3

�
� ?
Q ? ,

can be made arbitrarily small by choosing
�
� sufficiently large. The only non-vanishing

terms of this sum are those where N \ 9 5��V\ �
�
� and 9 :�� � �
� � . We can estimate

these terms by

� \ �
6 ?
��� � '�

 � '

? �	� S 
�
!�� ? ��� � 


W
� ? 9 ?

: �
6 ?

��

 � ���

? ��� S 
�
!�� 


W
� ? 9 ?

\ �

6 ? � �
��� � '�

 � '

W
� ? :

�

6 ? � �
��


 � �	�
W
� ? \ � � ?
 6 ? � � )

In both sums, we used the fact that 9 is larger than
�
� and that there are less than

�
�
�

terms in the inner sum. Thus,
�

can clearly be made arbitrarily small by choosing�
� sufficiently large. This proves Proposition 5.1 and concludes our exposition of the

unstable case.

6 Technical estimates

In this section, we prove the two technical estimates required for the proof of Theo-
rem 4.1 above.

Lemma 6.1 There exists a constant 7 independent of - such that

E � 0 9 1 %	 ( H ) � 8 � \ 7 H '���
for all H \ W

.

Remark 6.2 The power
W�� �

in the above lemma is not optimal but it is sufficient for
our needs. All we need is E � 0 9 1 %	 ( H ) � 8 � 3��

(
W
) uniformly in - .

Remark 6.3 The constant in the above lemma depends only on the coefficients of the
problem and the bound on the 6 ! . It is possible to allow for slowly growing 6 ! , using
the Sobolev embedding of L

�
into the fractional Sobolev space

1  � �
for ��� L W

.

Proof. For
� J

L
�

([ NPFRQ ]) with vanishing mean, denote by  � ! �"!�# N its Fourier coef-
ficients. Since the eigenfunctions �(! of � are uniformly bounded in L

�
, we have the

following estimate on � � � � :

� � � � \ 7
��
!�� ' 8
� ! 8 \ 7 �

��
!�� ' 8 9 8 '��

? 8 � ! 8 8 � � � � � 8 � ��!�� ' 8 9 8
� � � ? � '�� 8 \ 7�� � � � 8 ,
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where � is the operator that acts on Fourier coefficients as ( � � ) ! 3 8 9 8 � �� � ! . Here
we used the usual isometry between L

�
and

���
for � � ' :�� � ' 3 W

.
Denote by � ! the eigenvalues corresponding to the eigenfunctions � ! . By the defi-

nition of � , there exist constants
���

such that

� ' 9 8 \ 5 � ! \ � ? 9 8 , 8 � � 0 9 ��! 
 ( E ) 8 ? \ � � 9 ' '�� 8 )
With these notations,

� � 0 9 1 %	 � ( H
FIE ) (with fixed values of E and H ) are centered Gaus-
sian random variables given by

� � 0 9 1 %	 � ( H
FIE )
3 %�
!�� ' 6 !

� � 0 9 � ! 
 ( E )
� 1

� �
�	� � ( 1 �� ) � � ! ( � ) ,

with independent Wiener processes � ! ( H ). The variance of
� � 0 9 1 %	 � ( H
FIE ) is thus

bounded by

E
�� � � 0 9 1 %	 � ( H
FIE )

�� ? 3
%�
!�� ' 6

? ! 8 � � 0 9 � ! 
 ( E ) 8 ? �
1

� �
? � � ( 1 �� ) � �

\ 7 T
��
!�� ' 8 9 8 ' '��

8 � 1
� �
� X � !�
  � � \

��
!�� '

7
9� � 8

� W 5 � �
X � !�
 1 � )

We now take some 9 � to fixed later and split the sum into two parts:

E 8 � � 0 9 1 	 
 ( E!FIH ) 8 ? \ 7
! � � '�
! � ' 9 ' '��

8 H : 7
��
!�� ! �

W
9 � � 8

\ 7�9 ' � � 8� H : 7
9 '�� 8�

)

Choosing 9 � � H � '�� 8 , we have the estimate E 8 � � 0 9 1 %	 � ( EGFIH ) 8 ? \ 7 H '�� '�� . Since the
random variables

� � 0 9 1 %	 � ( EGFIH ) are Gaussian for all fixed values ( E!FKH ), we have

E � 0 9 1 %	 � 8 � \ 7 E � � 0 9 1 %	 � 88 3 � �
� E

� � 0 9 1 	 
 ( E!FKH ) 8 ��E \ 7 H '��� )

Lemma 6.4 For every 	 L N and � L=N there exists a constant 7 depending only on 	
and � , such that for any two random variables

1 ' and
1 ? with E

� 8 1 ' 8 ? : 8 1 ? 8 ? � \
� we obtain

E
�
log

� E � � � : � � � � �
? \ �

log( E ) 
 ? :�� ( 	 : E
1 ' ) log E : 7 ,

for every E � W .
Proof. Expanding the square, we get

E
�
log

� E � � � : � � � � �
? 3

(log E )
? :��

log E
�
E
1 ' : E log

� W : � � � � � � � E � �
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:
E
� 1 ' : log

� W : � � � � � � � E � �
?
)

Since we assumed E � W , we have

E
� 1 ' : log

� W : � � � � � � � E � �
? \ � �

E
1 ?' : E(

1 ? 5 1 ' ) ?B: W �
\ � � :�� )

It thus suffices to show that there exists E � L N depending only on � and on 	 such
that

� 9 � 3 E log
� W : � � � � � �

E
� \ 	 (6.1)

for E larger than E � .
To verify (6.1) consider arbitrary 	 L[N . We define �

3 8 1 ? 5 1 ' 8 and denote the
probability distribution on R S of � by P. Now choose � � L W

large enough such that

� �

�
	 � P( ��� )

\ 	 ,
� �

�
	 P( ��� )

\ 	 )
We choose � � 3 W :

(E �
?
)
� 	 . Now define

E � 3 �
' S ?�� � �
	 � �

�
	
	 )

We thus have

� 9 3 � �
	
� log

� W : � �
E
�

P( ��� )
: � �

�
	 log

� W : � �
E
�

P( ��� )

\
log

� W : � �
	
E
� : � �

� 	 log
� W : 	�� � � �

	
� P( ��� )

\ 	 :�� �

�
	 log

�
(
W : 	 ) � � � �

	
� P( ��� )

\ 	 : 	 log(
W : 	 ) : � �

� 	 ( �
5
� � ) P( ��� )

\ � 	 : 	 log(
W : 	 ) )

The claim follows immediately.
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