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ABSTRACT. We consider a class of stochastic PDEs of Burgers type in spatial
dimension 1, driven by space-time white noise. Even though it is well-known
that these equations are well-posed, it turns out that if one performs a spatial dis-
cretisation of the nonlinearity in the “wrong” way, then the sequence approximate
equations does converge to a limit, but this limit exhibits an additional correction
term.

This correction term is proportional to the local quadratic cross-variation (in
space!) of the gradient of the conserved quantity with the solution itself. This can
be understood as a consequence of the fact that for any fixed time, the law of the
solution is locally equivalent to Wiener measure, where space plays the role of
time. In this sense, the correction term is similar to the usual Itô-Stratonovich
correction term that arises when one considers different temporal discretisations
of stochastic ODEs.

1. INTRODUCTION

In this work, we give a rigorous analysis of the behaviour of stochastic Burgers
equations in one spatial dimension under various approximation schemes. It was
recently argued in [HV10] that if the approximation scheme fails to satisfy a certain
symmetry condition, then one expects the approximations to converge to a modified
equation, with the appearance of an additional correction term in the limit. This
correction term is somewhat similar to the Itô-Stratonovich correction that appears in
the study of SDEs when one compares centred and one-sided approximations. The
present article provides a rigorous justification of the results observed in [HV10],
at least in the case where the nonlinearity of the equation is of gradient type, and
therefore the limiting equation is well-posed in a classical sense.

More precisely, we will consider in this work stochastic PDEs of the form

∂tu = ν∂2
xu+ F (u) +∇G(u)∂xu+ ξ , (1.1)

where u = u(x, t) is an Rn-valued function, with x ∈ [0, 2π], t ≥ 0. In this
equation, ν > 0 is a positive constant, the functions F,G : Rn → Rn are assumed
to be C3, and the stochastic forcing term ξ consists of independent space-time white
noises in each component of Rn. For the sake of simplicity, we endow this equation
with periodic boundary conditions, but we do not expect this to alter our results
significantly.

Equation (1.1) is locally well-posed [Gyö98], provided that we rewrite the non-
linearity as ∂xG(u) and consider solutions either in the weak or the mild form
[DPZ92]. (Note that our noise term is not the gradient of space-time white noise, as
in [BG97]. Therefore, our solutions are actually continuous functions.) The aim
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of this article is to show that this well-posedness is much less stable than one may
imagine at first. Indeed, if we set

D+
ε u(x) =

u(x+ ε)− u(x)

ε
,

and consider the family uε of solutions to the approximate equation

∂tuε = ν∂2
xuε + F (uε) +∇G(uε)D

+
ε uε + ξ ,

then our main result, Theorem 1.6 below, implies that uε ⇒ ū, where ū is the
solution to (1.1), but with F replaced by

F̄ (u) = F (u)− 1

4ν
∆G(u) , (1.2)

where ∆ is the usual Laplacian on Rn.

Remark 1.1. An explicit calculation allows to check that the local quadratic variation
(in space!) of u for the solution to (1.1) is precisely given by 1/(2ν). Therefore,
one can interpret the correction term appearing in (1.2) as precisely being equal to
−1

2 times the quadratic covariation between u and ∇G(u). Recall that is exactly
the correction term that appears when one switches between Itô and Stratonovich
integral in the usual setting of stochastic calculus.

Remark 1.2. This correction term is a purely stochastic effect and is completely
unrelated to the fact that our discretisation scheme is not an upwind scheme (see
[CIR52, MRtTB05]). In the absence of noise, we would still have the regularising
property from the non-vanishing viscosity, so that pretty much any “reasonable”
numerical scheme would converge to the correct solution.

If D+
ε is replaced by D−ε , defined by D−ε u(x) =

(
u(x) − u(x − ε)

)
/ε, then a

similar result is true, but the sign in front of the correction term in (1.2) changes.
We will actually consider a much more general class of approximations to (1.1),
where we also allow both the linear operator ∂2

x and the noise term ξ to be replaced
by approximate versions that are still translation-invariant, but modified at the
lengthscale ε.

1.1. Statement of the main result. For ε > 0 we consider approximating stochas-
tic PDEs of the type

∂tuε = ν∆εuε + F (uε) +∇G(uε)Dεuε + ξε .

Since our system is invariant under spatial translations, it seems natural to restrict
ourselves to a class of approximations that enjoys the same property. Throughout
this article, we will therefore use approximate differential operators ∆ε and Dε, as
well as an approximate space-time white noise ξε given by their Fourier transforms:

∆̂εu(k) = −k2f(ε|k|)û(k) , D̂εu(k) = ikg(εk)û(k) , ξ̂ε(k) = h(ε|k|)ξ̂(k) .

We will make the following standing assumptions on these objects.

Assumption 1.3. The function f : [0,∞) → [0,+∞] is twice differentiable at
0 with f(0) = 1 and f ′(0) = 0. Furthermore, there exists q ∈ (0, 1] such that
f(k) ≥ q for all k > 0.

If f(k) = +∞ for some values of k, we use the convention exp(−t∞) = 0 for
every t > 0. In this case, the semigroup generated by ∆ε is not strongly continuous,
but this is of no consequence for our analysis.
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Assumption 1.4. There exists a signed Borel measure µ such that∫
R
eikx µ(dx) = ik g(k) ,

and such that

µ(R) = 0 , |µ|(R) <∞ ,
∫

R
xµ(dx) = 1 ,

∫
R
|x|4 |µ|(dx) <∞ . (1.3)

In particular, we have (Dεu)(x) := 1
ε

∫
R u(x+ εy)µ(dy).

Assumption 1.5. The function h is bounded and such that h2/f is of bounded
variation. Furthermore, h is twice differentiable at the origin with h(0) = 1 and
h′(0) = 0.

Let ū be the solution to the equation

∂tū = ν∂2
xū+ F (ū) +∇G(ū)∂xū+ ξ , (1.4)

In this equation,

F := (F − Λ∆G)

and Λ ∈ R is a correction constant given by

Λ
def
=

1

2πν

∫
R+

∫
R

(1− cos(yt))h2(t)

t2f(t)
µ(dy) dt . (1.5)

Note that a straightforward calculation shows that Λ is indeed well-defined, as a
consequence of the fact that h2/f is bounded by assumption and that |µ| has a finite
second moment.

Before we state our main result, note that the equation (1.4) is locally well-
posed in L∞, see [BCF91, BCJL94, DPDT94, Gyö98, Hai09]. As a consequence,
it has a well-defined blow-up time τ∗ (possibly infinite) such that, almost surely,
limt→τ∗ ‖ū(t)‖L∞ = +∞ on the event {τ∗ <∞}. With this notation, we are now
ready to state the main result of this paper.

Theorem 1.6. Let κ > 0. There exists a sequence of stopping times τε satisfying
limε→0 τε = τ∗ in probability, and such that

lim
ε→0

P
(

sup
t≤τε
‖uε(t)− ū(t)‖L∞ > ε

1
8
−κ
)

= 0 .

Remark 1.7. The statement of Theorem 1.6 is slightly incomplete since we do not
specify how we choose the initial conditions. In order to avoid further technical
complications, we will actually consider sequences of initial conditions that have
the property that the initial condition for uε “behaves like” the solution uε(t) for
positive times. This statement will be made more precise in Theorem 2.2 below.

Before we proceed, we list some of the most common examples of discretisations
that do fit our framework. For a, b ≥ 0 with a+ b > 0, it is natural to discretise the
derivative operator by choosing

µ :=
δa − δ−b
a+ b

.

This is also the discretisation that was considered in [HV10]. As far as the discreti-
sations of the noise and the Laplacian are concerned, there are at least three natural
choices.
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No discretisation. This is the case f = h = 1 where only the nonlinearity is
discretised. With this choice, one can check that the correction factor is given by
Λ = 1

4ν
a−b
a+b .

Finite difference discretisation. In this case, we divide the interval [0, 2π] into N
equally sized intervals. For convenience we assume that N is odd and we set(

∆εu
)
(x) =

1

ε2

(
u(x+ ε) + u(x− ε)− 2u(x)

)
, ε =

2π

N
.

We furthermore identify a function u with the trigonometric polynomial of degree
(N − 1)/2 agreeing with u at the gridpoints. This corresponds to the choice

f(k) =

{
4
k2

sin2(k/2), k ∈ [0, π)
+∞, k ∈ [π,∞)

, h = 1[0,π) ,

The natural choice for the discretisation of the derivative operator in this case is to
choose a and b to be integers, so that discretisation takes place on the gridpoints.
With this choice, it can be shown that the correction factor is identical to that obtained
in the previous case. Note however that this is not the case if the discretisation of
the derivative operator is not adapted to the gridsize.
Galerkin discretisation. In this case, we approximate ∆ and ξ by only keeping
those Fourier modes that appear in the approximation by trigonometric polynomials.
This corresponds to the choice

f(k) =

{
1, k ∈ [0, π)
+∞, k ∈ [π,∞)

, h = 1[0,π) .

The correction factor Λ is then given by

Λ =
cos(πa) + πaSi(πa)− cos(πb)− πbSi(πb)

2π2ν(a+ b)
,

where Si t =
∫ t

0
sinx
x dx.

The rest of this paper is structured as follows. In Section 2 we introduce notation,
we give a refined formulation of the main result and present an outline of the proof
of the main result (Theorem 2.2). In Section 3 we prove several useful bounds on
the approximating semigroups and the approximations of the gradient. Section 4
is devoted to several estimates for stochastic convolutions, the most crucial one
being Proposition 4.6, which is responsible for the correction term appearing in the
limiting equation. Most of the work is performed in Section 5, where convergence
of various approximating equations is proved.
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Netherlands Organisation for Scientific Research (NWO).
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2. PROOF OF THE MAIN RESULT

In order to shorten notations, we introduce the semigroups S and Sε, defined as
rescaled versions of the heat semigroup and its approximation:

S(t)
def
= e−t(1−ν∂

2
x) , Sε(t)

def
= e−t(1−ν∆ε) ,

where we define Sε by Fourier analysis, making use of the convention e−∞ = 0.
Since we will always work with the mild formulation, it will be convenient to have
a notation for the convolution (in time) of a function with one of the semigroups.
We will henceforth write

(S ∗ w)(t)
def
=

∫ t

0
S(t− s)w(s) ds .

Let (W (t))t∈R be a two-sided cylindrical Wiener process onH def
= L2([0, 2π],Rn)

(see [DPZ92, Hai09] for precise definitions) and let Qε be the bounded operator on
H defined as a Fourier multiplier by

Q̂εu(k) = h(ε|k|)û(k) .

(We assume that it acts independently on each component.) Finally, we define the
H-valued processes ψ and ψ̃ by

ψ(t) =

∫ t

−∞
S(t− s) dW (s) , ψ̃(t) =

∫ t

−∞
Sε(t− s)Qε dW (s) ,

so that, in the notations of the previous section, they are the stationary solutions to
the linear equations

∂tψ = (ν∂2
x − 1)ψ + ξ , ∂tψ̃ = (ν∆ε − 1)ψ̃ + ξε .

With all of these notations at hand, we can rewrite the equations for ū and uε in the
mild form as

ū(t) = S(t)v0 + ψ(t) + S ∗
(
F (ū) +∇G(ū)∂xū

)
(t) , (2.1)

uε(t) = Sε(t)v0 + ψ̃(t) + Sε ∗
(
F (uε) +∇G(uε)Dεuε

)
(t) . (2.2)

Remark 2.1. Note that we have used here a common initial condition v0 for the
difference ū−ψ and uε− ψ̃. As a consequence, the two equations do not start with
the same initial condition! However, as ε→ 0, the initial condition of uε converges
to that of ū. The reason for not starting with the same initial condition is mostly of
technical nature.

It will be convenient to define for any 0 < γ < χ,

ψγ
def
= (I −Πε−γ )ψ , ψγ

def
= Πε−γψ , ψχγ

def
= (Πε−χ −Πε−γ )ψ .

The expressions ψ̃γ , ψ̃γ , and ψ̃χγ are defined analogously. Here ΠN denotes the
projection onto the low-frequency components of the Fourier expansion, defined by
ΠNen

def
= 1|n|≤Nen, where en(x) = (2π)−

1
2 einx.

We set

v̄
def
= ū− ψ , ṽ

def
= uε − ψ̃ .

In the proof it will be convenient to work with the functions v̄γ and ṽγ defined by

v̄γ
def
= v̄ + ψγ = ū− ψγ , ṽγ

def
= ṽ + ψ̃γ = uε − ψ̃γ .
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It follows from (2.1) and (2.2) that these functions satisfy the following equations:

v̄γ(t) = S(t)v0 + ψγ(t) + S ∗
(
F (v̄γ + ψγ) + ∂x

(
G(v̄γ + ψγ)

))
(t) , (2.3)

ṽγ(t) = Sε(t)v0 + ψ̃γ(t) + Sε ∗
(
F (ṽγ + ψ̃γ) +∇G(ṽγ + ψ̃γ)Dε(ṽ

γ + ψ̃γ)
)
(t).

(2.4)

For large parts of this article, it will be convenient to work in the fractional
Sobolev space Hα for some α > 1

2 , so that Hα ⊂ L∞. Furthermore, we will need
to use a high-frequency cut-off, which will smoothen out the solutions at a scale εχ

for some χ > 1. It turns out that a reasonable choice for these parameters is given
by

α = 3
4 , γ = 1

3 , χ = 3
2 , (2.5)

and we will fix these values from now on. With these notations at hand, the following
theorem, which is essentially a more precise reformulation of Theorem 1.6, is a
more precise statement of our main result. Here and in the rest of the paper we write
‖u‖β to denote the norm of an element u in the fractional Sobolev space Hβ for
β ∈ R.

Theorem 2.2. Let κ > 0 be an arbitrary (small) exponent and let v0 ∈ Hβ for
all β < 3

2 . There exists a sequence of stopping times τε satisfying τε → τ∗ in
probability as ε→ 0, such that

lim
ε→0

P
(

sup
t≤τε
‖uε(t)− ū(t)‖L∞ > ε

1
8
−κ
)

= 0 . (2.6)

In fact, we have the bounds

lim
ε→0

P
(

sup
t≤τε
‖ṽγ(t)− v̄γ(t)‖α > ε

1
8
−κ
)

= 0 , (2.7)

lim
ε→0

P
(

sup
t≤τε
‖ψ̃γ(t)− ψγ(t)‖L∞ > ε

1
2
−κ
)

= 0 . (2.8)

Remark 2.3. We emphasise again that the initial conditions ū(0) and uε(0) are
slightly different. In fact, one has uε(0) = ū(0) + ψ̃(0)− ψ(0).

Remark 2.4. The rate 1
8 is not optimal. By adjusting the parameters α, γ and χ in

an optimal way, and by sharpening some of the arguments in our proof, one could
achieve a slightly better rate. However, we do not believe that any rate obtained in
this way would reflect the true speed of convergence, so we keep with the values
(2.5) that yield simple fractions.

Remark 2.5. From a technical point of view, the general methodology followed in
this section and the subsequent sections is inspired from [Hai10], where a somewhat
similar phenomenon was investigated. Besides the structural differences in the
equations considered here and in [Hai10], the main technical difficulties that need
to be overcome for the present work are the following:

(1) In [Hai10], it is possible to simply subtract the stochastic convolution ψ
(or ψ̃) and work with the equation for the remainder. Here, we instead
subtract only the highest Fourier modes of ψ. The reason for this choice
is that it entails that v̄γ → ū as ε → 0. This allows us to linearise the
nonlinearity around v̄γ in order to exhibit the desired correction term. As a
consequence, our a priori regularity estimates are much worse than those
in [Hai10] and our convergence rates are worse. The main reason why
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we need this complication is that our approximate derivative Dε does not
satisfy the chain rule.

(2) All of our fixpoint arguments need to be performed in the fractional Sobolev
space Hα, for some α > 1

2 . This is in contrast to [Hai10] where some
of the arguments could be performed first in L∞, and then lifted to Hα

by a standard bootstrapping argument. These bootstrapping arguments
fail here, since the nonlinearity of our approximating equation contains an
approximate derivative, which gives rise to correction terms which are not
easy to control.

(3) In one crucial step where a Gaussian concentration inequality is employed
in [Hai10], it was necessary that the stochastic convolutions belong to Hα

for some α > 1
2 . This is the case in [Hai10] as a consequence of the extra

regularising effect caused by a small fourth-order term present in the linear
part. This additional regularising effect is not always present in the current
work. We therefore perform another truncation in Fourier space, at very
high frequencies. This is the purpose of the exponent χ.

Note also that Proposition 4.6 is the analogue of Proposition 4.1 in [Hai10]. One
difference is that we have a much cleaner separation of the probabilistic and the
analytical aspects of this result.

By a standard Picard fixed point argument (see, e.g. [Hai09]) it can be shown
that (2.1) admits a unique mild solution ū defined on a random time interval [0, τ∗].
Moreover, the spatial regularity of ψ and ū equals that of a Brownian path, in the
sense that ψ(t) and ū(t) are continuous and belong to Hβ for any β < 1

2 and any
t > 0, but not to H

1
2 . We shall take advantage of the fact that the process v̄ is much

more regular. In fact, v̄(t) ∈ Hβ almost surely for any β < 3
2 and any t > 0, but

one does not expect it to belong to H
3
2 in general. This follows immediately from

the mild formulation (2.1) combined with a standard bootstrapping argument. It
follows from these considerations that, for every fixed time horizon T , the stopping
time

τK∗ := T ∧ inf{t : ‖v̄(t)‖α ∨ ‖ū(t)‖L∞ ≥ K}
converges in probability to τ∗ ∧ T as K →∞.

It will be shown in Section 4 that a number of functionals of ψ and ψ̃ scale in the
following way:

‖ψ̃χγ (t)‖L∞ . ε
γ
2
−κ , ‖ψ̃γ(t)‖L∞ . ε

γ
2
−κ ,

‖ψγ(t)‖L∞ . ε
γ
2
−κ , ‖ψ̃χ(t)‖L∞ . ε

χ
2
−κ ,

‖ψγ(t)‖α . ε−γ(α− 1
2

)−κ , ‖ψ̃χγ (t)‖α . ε−χ(α− 1
2

)−κ ,

‖ψ̃γ(t)− ψγ(t)‖α . ε2−γ(α+ 3
2

)−κ , Θε(ψ̃γ(t)) . ε−1−κ ,

Θε(ψ̃χ(t)) . εχ−2−κ , ‖Λ− Ξε(ψ̃
χ
γ (t))‖−α . ε

1
2
−κ ,

where the quantities Θε and Ξε are defined by

Θε(u)
def
=

∫
R
y2‖D̂εyu‖2L2 |µ|(dy) , Ξε(u)

def
=

∫
R

εy2

2
D̂εyu⊗ D̂εyuµ(dy) .

Note that all of these relations are of the form Ψε
i (t) . ε

αi−κ for some expression
Ψε
i depending on ε and some exponent αi. In the proof it will be convenient to
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impose this behaviour by means of a hard constraint. For this purpose we introduce
the stopping time τK , which is defined for K > 0 by

τK
def
= τK∗ ∧ inf{t : ∃i : Ψε

i (t) ≥ εαi−κ} . (2.9)

From now on, we will write CK to denote a constant which may depend on K
(and T ) and is allowed to change from line to line. Similarly, κ will be a positive
universal constant which is sufficiently small and whose value is allowed to change
from line to line. However, the final value of κ is independent of ε, K and T .

The remainder of this section is devoted to the proof of Theorem 2.2.

Proof of Theorem 2.2. Most of the work in the proof consists of bounding the
difference between ṽγ and v̄γ in Hα. This bound will be obtained in several steps,
using the intermediate processes v(i)

ε , i = 1, . . . , 4, defined by

v(1)
ε (t) = S(t)v0 + ψγ(t) + S ∗

(
F (v(1)

ε ) + ∂xG(v(1)
ε )
)
(t) , (2.10a)

v(2)
ε (t) = S(t)v0 + ψγ(t) + S ∗

(
F (v(2)

ε ) +DεG(v(2)
ε )
)
(t) , (2.10b)

v(3)
ε (t) = Sε(t)v0 + ψ̃γ(t) + Sε ∗

(
F (v(3)

ε ) +DεG(v(3)
ε )
)
(t) , (2.10c)

v(4)
ε (t) = Sε(t)v0 + ψ̃γ(t) (2.10d)

+ Sε ∗
(
F (v(4)

ε + ψ̃χγ ) +∇G(v(4)
ε + ψ̃χγ )Dε(v

(4)
ε + ψ̃χγ )

)
(t) .

Recall furthermore the definition of the stopping time τK given in (2.9). With this
definition at hand, we set τK0

def
= τK as well as v(0)

ε
def
= v̄γ and v(5)

ε
def
= ṽγ , and we

define recursively a sequence of stopping times τKj with j = 1, . . . , 5 by

τKj = τKj−1 ∧ inf{t : ‖v(j)
ε (t)− v(j−1)

ε (t)‖α ≥ K} . (2.11)

With these notations at hand, Propositions 5.1 – 5.7 state that, for every fixed values
K,κ > 0 and every j = 1, . . . , 5, one has

lim
ε→0

P
(

sup
t≤τKj

‖v(j)
ε (t)− v(j−1)

ε (t)‖α > ε
1
8
−κ
)

= 0 , (2.12)

Combining all of these bounds, we conclude immediately that, for every fixed time
horizon T > 0 and every choice of values K and κ, we have

lim
ε→0

P
(

sup
t≤τK5

‖ṽγ(t)− v̄γ(t)‖α > ε
1
8
−κ
)

= 0 .

This is formally very close to (2.7), except that we still have the values T,K > 0
appearing in our statement and consider the solutions only up to the stopping time
τK5 .

Since τ∗ ∧T → τ∗ as T →∞ and since we already argued that τK∗ → τ∗ ∧T as
K →∞, the bound (2.7) follows if we are able to show that, for every fixed choice
of K and T ,

lim
ε→0

P(τK5 6= τK∗ ) = 0 . (2.13)

Since the statement of our theorem is stronger, the smaller the value of κ, we can
assume without loss of generality that κ < 1

8 . In this case, limε→0 ε
1
8
−κ = 0, so

that (2.12) and (2.11) together imply that

lim
ε→0

P(τKj 6= τKj−1) = 0 ,

for j = 1, . . . , 5, from which we conclude that limε→0 P(τK5 6= τK) = 0.
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In order to finish the proof of (2.7), it now suffices to show that limε→0 P(τK 6=
τK∗ ) = 0. Fix an arbitrary T > 0 and κ > 0. It then follows from Propositions 4.3,
4.4 and 4.5 that for each of the terms Ψj appearing in (2.9), there exists a constant
Cj > 0 such that

E sup
t∈[0,T ]

Ψε
j(t) ≤ Cjεαj−

κ
2 ,

uniformly for all ε ≤ 1. It then follows from Chebychev’s inequality that

P(τK 6= τK∗ ) ≤
∑
j

P
(

sup
t∈[0,T ]

Ψε
j(t) ≥ εαj−κ

)
≤
∑
j

Cjε
κ/2 ,

from which the claim follows.
Since (2.6) follows from (2.7) and (2.8), the proof of the theorem is complete if

we show that (2.8) holds. Since it follows from Proposition 4.3 and Chebychev’s
inequality that

lim
ε→0

P
(

sup
t≤T
‖ψ̃γ(t)− ψγ(t)‖L∞ > ε

1
2
−κ
)

= 0 ,

for every T > 0, this claim follows at once. �

3. ANALYTIC TOOLS

3.1. Products and compositions of functions in Sobolev spaces. In this subsec-
tion we collect bounds for products and compositions of functions in Sobolev spaces.
As is usual in the analysis literature, we use the notation Φ . Ψ as a shorthand for
‘there exists a constant C such that Φ ≤ CΨ’. These estimates will be useful in
order control the various terms that arise in the Taylor expansion of the nonlinearity
that will be performed in Section 5 below.

Lemma 3.1. Let r, s, t ≥ 0 be such that r ∧ s > t and r + s > 1
2 + t.

(1) For f ∈ Hr and g ∈ Hs we have fg ∈ Ht and

‖fg‖t . ‖f‖r‖g‖s . (3.1)

(2) For f ∈ Hr and g ∈ H−t we have fg ∈ H−s and

‖fg‖−s . ‖f‖r‖g‖−t . (3.2)

Proof. The bound (3.1) is well-known and an elementary proof can be found for
example in [Hai09, Theorem 6.18]. To prove (3.2), we take ϕ ∈ Hs and use (3.1)
to obtain

〈ϕ, fg〉 = 〈ϕf, g〉 ≤ ‖ϕf‖t‖g‖−t . ‖ϕ‖s‖f‖r‖g‖−t ,

which implies the desired result. �

Lemma 3.2. Let s ∈ (1
2 , 1). There exists C > 0 such that for any u ∈ Hs and any

G ∈ C1(Rn; Rn) satisfying

‖Gu‖C1 := sup{|G(x)|+ |∇G(x)| : |x| ≤ ‖u‖L∞} <∞ ,

we have

‖G ◦ u‖s ≤ C‖Gu‖C1(1 + ‖u‖s) .
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Proof. Let τh be the shift operator defined by τhu(x) := u(x−h). It is well known
(see, e.g., [DS93] or, for functions defined on Rn, [AF03, Theorem 7.47]) that the
expression

‖u‖L2 +

(∫ 1

0

[
t−s sup
|h|<t
‖u− τhu‖L2

]2 dt

t

) 1
2

(3.3)

defines an equivalent norm on Hs. The result then follows by inserting the estimates

‖G ◦ u‖L2 ≤ ‖G ◦ u‖L∞ ≤ C‖Gu‖C1

‖G ◦ u− τh(G ◦ u)‖L2 ≤ C‖Gu‖C1‖u− τhu‖L2

into (3.3). �

3.2. Semigroup bounds. We will frequently use the fact that for α ≥ β and T > 0,
there exists a constant C > 0 such that

‖S(t)u‖α ≤ Ct−
1
2

(α−β)‖u‖β , (3.4)

for any ε ∈ (0, 1], t ∈ [0, T ] and u ∈ Hβ . This is a straightforward consequence
of standard analytic semigroup theory [Lun95, Hai09]. Since the generator of S is
selfadjoint in all of the Hs, it is also straightforward to prove (3.4) by hand. As a
consequence, we have

Lemma 3.3. Let α, β ∈ R be such that 0 ≤ α− β < 2 and let T > 0. There exists
C > 0 such that for all t ∈ [0, T ] and u ∈ C([0, t];Hβ) we have∥∥∥∫ t

0
S(t− s)u(s) ds

∥∥∥
α
≤ Ct1−

1
2

(α−β) sup
s∈[0,t]

‖u(s)‖β . (3.5)

Proof. It suffices to integrate the bound (3.4). �

The following bounds measure how well Sε approximates S in these interpolation
spaces. The general philosophy is that every power of ε has to be paid with one
spatial derivative worth of regularity. This type of power-counting is a direct
consequence of the fact that the function f that measures how much ∆ε differs
from ∂2

x, is evaluated at ε|k| in the definition of ∆ε. The precise bounds are the
following:

Lemma 3.4. Let κ ∈ [0, 2]. For T > 0 there exists C > 0 such that for any
t ∈ [0, T ], ε ∈ (0, 1], and u ∈ Hβ , we have

‖Sε(t)u− S(t)u‖α ≤ Cεκt−
1
2

(α−β+κ)‖u‖β (β ≤ α+ 2κ) , (3.6)

‖Sε(t)u‖α ≤ Ct−
1
2

(α−β)‖u‖β (β ≤ α) . (3.7)

Proof. We set f̄ def
= f − 1 and assume ν = 1 for notational simplicity, since the

case ν 6= 1 is virtually identical. The assumptions on f imply that |f̄(εn)| ≤ cε2n2

whenever n < δ/ε and δ is some sufficiently small constant. Using the mean value
theorem and the fact that we can assume δ < 1 without loss of generality, we obtain
for n < δ/ε and κ ∈ [0, 2],

| exp(−tn2f̄(εn))− 1| ≤ (2 ∧ ctε2n4)ectε
2n4 ≤ Ct

κ
2 εκn2κectδ

2n2

≤ Cεκt
κ
2 n2κecδ

2t(1+n2) .
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Inserting this bound into the identity

(Sε(t)u− S(t))en = (e−tn
2f̄(εn) − 1)e−t(1+n2)en ,

it then follows from (3.4) that

‖Πδ/ε(Sε(t)− S(t))u‖α ≤ Cεκt
κ
2 ‖S((1− δ2c)t)u‖α+2κ

≤ Cεκt−
1
2

(α−β+κ)‖u‖β ,
(3.8)

provided that we choose δ sufficiently small so that δ2c ≤ 1
2 , say.

On the other hand, note that

(I −Πδ/ε)(Sε(t)u− S(t))en = 1{|n|>δ/ε}(e
−tn2f̄(εn) − 1)e−t(1+n2)en .

Recall that f̄(εn) ≥ q− 1 for all n, and that q ∈ (0, 1]. Then we can find a constant
C such that

| exp(−tn2f̄(εn))− 1|e−t(1+n2) ≤ Ce−q(1+n2)t .

Moreover, for any κ > 0 we have 1{|n|>δ/ε} ≤ |εn/δ|κ. It thus follows, using (3.4)
again, that

‖(I −Πδ/ε)(Sε(t)− S(t))u‖α ≤ Cεκ‖S(qt)u‖α+κ ≤ Cεκt−
1
2

(α−β+κ)‖u‖β .

The bound (3.6) now follows by combining this inequality with (3.8). The inequality
(3.7) follows by combining the special case κ = 0 with (3.4). �

3.3. Estimates for the gradient term. In this section, we similarly show how well
the operator Dε approximates ∂x. Again, the guiding principle is that every power
of ε “costs” the loss of one derivative. However, we are also going to use the fact
that Dε is a bounded operator. In this case, we can gain up to one spatial derivative
with respect to the operator ∂x, but we have to “pay” with the same number of
inverse powers of ε. The rigorous statement for the latter fact is the following:

Lemma 3.5. Let β ∈ R and α ∈ [0, 1]. There exists C > 0 such that for all
ε ∈ (0, 1] and u ∈ Hβ the estimate

‖Dεu‖β−α ≤ Cεα−1‖u‖β

holds.

Proof. Using the assumption that M := |µ|(R) < ∞, together with Jensen’s
inequality and Fubini’s theorem we obtain

‖Dεu‖2L2 ≤
1

ε2

∫ (∫
R
|u(x+ εy)| |µ|(dy)

)2

dx

≤ M

ε2

∫ ∫
R
|u(x+ εy)|2 |µ|(dy) dx =

M2

ε2
‖u‖2L2 .

On the other hand, assuming for the moment that u is smooth, we use the
assumption that µ(R) = 0, and apply Jensen’s inequality and Minkowski’s integral
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inequality to obtain

‖Dεu‖2L2 =
1

ε2

∫ (∫
R
u(x+ εy)µ(dy)

)2

dx

=
1

ε2

∫ (∫
R

∫ εy

0
u′(x+ z) dz µ(dy)

)2

dx

≤ M

ε2

∫ ∫
R

(∫ εy

0
|u′(x+ z)| dz

)2

|µ|(dy) dx

≤ M

ε2

∫
R

(∫ εy

0

(∫
|u′(x+ z)|2 dx

) 1
2

dz

)2

|µ|(dy)

= M‖u′‖2L2

∫
R
y2|µ|(dy) ≤ C‖u‖21 .

Using complex interpolation, it follows that ‖Dεu‖L2 ≤ Cεα−1‖u‖α for every
α ∈ [0, 1]. The desired result then follows from the fact that Dε commutes with
every Fourier multiplier. �

The announced approximation result on the other hand is the following:

Lemma 3.6. Let β ∈ R and α ∈ [0, 1]. There exists C > 0 such that for all
ε ∈ (0, 1] and u ∈ Hβ the estimate

‖Dεu− ∂xu‖β−1−α ≤ Cεα‖u‖β
holds.

Proof. In view of (1.3) we have, assuming for the moment that u is smooth,

(Dε − ∂x)u(x) =
1

ε

∫
R

∫ εy

0

∫ w

0
u′′(x+ z) dz dw µ(dy) .

Integrating against a test function ϕ and applying Fubini’s theorem, we arrive at∣∣∣∣ ∫ ϕ(x)(Dε − ∂x)u(x) dx

∣∣∣∣ ≤ C

ε

∫
R

∫ εy

0

∫ w

0
‖ϕ‖2−β‖u‖β dz dw |µ|(dy)

≤ Cε‖ϕ‖2−β‖u‖β
∫

R
|y|2 |µ|(dy) ,

which implies that

‖(Dε − ∂x)u‖β−2 ≤ Cε‖u‖β .

On the other hand, Lemma 3.5 implies that

‖(Dε − ∂x)u‖β−1 ≤ C‖u‖β ,

and the result then follows as before by interpolating between these estimates. �

As an immediate corollary of these bounds, we obtain the following useful fact:

Corollary 3.7. Let β ∈ [0, 1). There exists C > 0 such that for ε ∈ (0, 1], u ∈ Hβ ,
and G ∈ C1(Rn) we have

‖DεG(u)− ∂xG(u)‖−1 ≤ Cεβ‖Gu‖C1(1 + ‖u‖β) ,

where ‖Gu‖C1 is defined as in Lemma 3.2.
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Proof. Using Lemmas 3.6 and 3.2 we obtain

‖DεG(u)− ∂xG(u)‖−1 ≤ Cεβ‖G(u)‖β ≤ Cεβ‖Gu‖C1(1 + ‖u‖β) ,

which is the stated claim. �

4. PROBABILISTIC TOOLS

In this section we prove some sharp estimates for certain expressions involving
stochastic convolutions. Our main tool is the following version of Kolmogorov’s
continuity criterion, which follows immediately from the one given for example
in [RY94]. The reason why we state condition (4.1) in this form, is that it is
automatically satisfied (by hypercontractivity) for random fields taking values in a
Wiener chaos of fixed (finite) order.

Lemma 4.1. Let (ϕ(t))t∈[0,1]n be a Banach space-valued random field having the
property that for any q ∈ (2,∞) there exists a constant Kq > 0 such that(

E‖ϕ(t)‖q
) 1
q ≤ Kq

(
E‖ϕ(t)‖2

) 1
2 ,(

E‖ϕ(s)− ϕ(t)‖q
) 1
q ≤ Kq

(
E‖ϕ(s)− ϕ(t)‖2

) 1
2 ,

(4.1)

for all s, t ∈ [0, 1]n. Furthermore, suppose that the estimate

E‖ϕ(s)− ϕ(t)‖2 ≤ K0|s− t|δ

holds for some K0, δ > 0 and all s, t ∈ [0, 1]n. Then, for every p > 0 there exists
C > 0 such that

E sup
t∈[0,1]n

‖ϕ(t)‖p ≤ C
(
K0 + E‖ϕ(0)‖2

) p
2 .

Throughout this subsection we shall use θk and θ̃k for the Fourier coefficients of
ψ and ψ̃, so that

ψ(t) =
∑
k∈Z

θk(t)ek , ψ̃(t) =
∑
k∈Z

θ̃k(t)ek .

With this notation at hand, we first state the following approximation bound, which
shows that we can again trade powers of k for powers of ε, provided that we look at
the difference squared:

Lemma 4.2. For t ≥ 0, k ∈ Z and ε ∈ (0, 1] we have

E|θ̃k(t)− θk(t)|2 ≤ C(k−2 ∧ ε4k2) . (4.2)

Proof. We write again f̄ = f −1 and assume ν = 1 for simplicity. The Itô isometry
then implies that

E|θ̃k(t)− θk(t)|2 = C

∫ ∞
0

e−2t(1+k2)
(

1− h(ε|k|)e−tk2f̄(ε|k|)
)2
dt

≤ C
∫ ∞

0
e−2t(1+k2)

(
1− e−tk2f̄(ε|k|)

)2
dt

+ C

∫ ∞
0

e−2t(1+k2)e−2tk2f̄(ε|k|)
(

1− h(ε|k|)
)2
dt

def
= I1 + I2 .

(4.3)
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Let δ > 0 be a (small) constant to be determined later and consider first the term I1

with |εk| ≤ δ. Since f is twice differentiable near the origin, we can find δ small
enough so that |f̄(|εk|)| ≤ cε2k2 for some c > 0. Therefore, for t ≥ 0,

|1− e−tk2f̄(ε|k|)| ≤ ctε2k4ectε
2k4 ≤ ctε2k4ecδ

2tk2 , (4.4)

so that

|I1| ≤ Cε4k8

∫ ∞
0

t2e−2t(1+k2)+2cδ2k2t dt .

If we ensure that δ is small enough so that 2cδ2 ≤ 1, we obtain

|I1| ≤ Cε4k8

∫ ∞
0

t2e−k
2t dt ≤ Cε4k2 ≤ C

(
k−2 ∧ ε4k2

)
,

where the last inequality follows from the fact that |εk| ≤ δ by assumption.
To treat the case |εk| > δ, we use the fact that by assumption there exists

q ∈ (0, 1] such that f ≥ q, so that

|I1| ≤
∫ ∞

0
e−2tk2

(
1− e−tk2(q−1)

)2
dt ≤ C

∫ ∞
0

e−2tqk2 dt (4.5)

≤ Ck−2 ≤ C
(
k−2 ∧ ε4k2

)
.

The bound on I2 works in pretty much the same way, using the fact that the
assumptions on h imply that

|1− h(ε|k|)| ≤ C
(
1 ∧ ε2k2

)
.

Using again the fact that f ≥ q, we then obtain

I2 ≤ C
∫ ∞

0
e−2tqk2

(
1 ∧ ε4k4

)
dt ≤ C

(
k−2 ∧ ε4k2

)
,

as required. �

We continue with a sequence of propositions, in which the estimates obtained in
the previous lemma are used to establish various bounds for stochastic convolutions.

Proposition 4.3. Let 0 < γ < χ. For κ > 0 and ε ∈ (0, 1] we have

E sup
t∈[0,T ]

‖ψγ(t)‖L∞ ≤ Cε
γ
2
−κ , E sup

t∈[0,T ]
‖ψ̃γ(t)‖L∞ ≤ Cε

γ
2
−κ ,

E sup
t∈[0,T ]

‖ψ̃χγ (t)‖L∞ ≤ Cε
γ
2
−κ , E sup

t∈[0,T ]
‖ψ̃γ(t)− ψγ(t)‖L∞ ≤ Cε

1
2
−κ .

Proof. We start with the proof of the second estimate. Observe that θ̃k is a complex
one-dimensional stationary Ornstein-Uhlenbeck process with variance h2/(2(1 +
νk2f)) and characteristic time 1 + νk2f . This implies that

E|θ̃k(t)|2 =
h2(ε|k|)

2(1 + νk2f(ε|k|))
≤ C(1 ∧ k−2) (4.6)

and

E|θ̃k(t)− θ̃k(s)|2 ≤ Ch2(ε|k|)|t− s| ≤ C|t− s| . (4.7)

These bounds imply that, on the one hand,

E|θ̃k(t)ek(x)− θ̃k(s)ek(y)|2 ≤ CE|θ̃k(t)|2 + CE|θ̃k(s)|2 ≤ C(1 ∧ k−2) ,
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while on the other hand, one has

E|θ̃k(t)ek(x)− θ̃k(s)ek(y)|2

≤ CE|θ̃k(t)− θ̃k(s)|2 + Ck2|x− y|2E|θ̃k(s)|2

≤ C|t− s|+ C|x− y|2 .

Combining these inequalities we find that, for every κ ∈ [0, 2],

E|θ̃k(t)ek(x)− θ̃k(s)ek(y)|2 ≤ C(1 ∧ k−2)1− 1
2
κ(|t− s|+ |x− y|2)

κ
2 .

Since the θ̃k’s are independent except for the reality condition θ̃−k = θ̃k, we infer
that

E|ψ̃γ(t, x)− ψ̃γ(s, y)|2 ≤ C
∑
|k|>ε−γ

E|θ̃k(t)ek(x)− θ̃k(s)ek(y)|2

≤ C(|t− s|+ |x− y|2)
κ
2

∑
|k|>ε−γ

(1 ∧ k−2)1− 1
2
κ

≤ Cε(1−κ)γ(|t− s|+ |x− y|2)
κ
2 .

Arguing similarly, we obtain

E|ψ̃γ(0, 0)|2 ≤ C
∑
|k|>ε−γ

E|θ̃k(0)|2 ≤ C
∑
|k|>ε−γ

(1 ∧ k−2) ≤ Cεγ .

The result now follows by combining these two bounds with Lemma 4.1.
The proof of the first and third estimates being very similar, we do not reproduce

them here. In order to prove the last estimate, we use Lemma 4.2 to obtain

E|θ̃k(t)− θk(t)|2 ≤ C(k−2)
3
4

+ 1
4
κ(ε4k2)

1
4
− 1

4
κ ≤ Cε1−κk−1−κ .

This bound then replaces (4.6), and the rest of the proof is again analogous to the
proof of the second estimate. �

Proposition 4.4. Let ζ > 0. For κ > 0 and ε ∈ (0, 1] we have

E sup
t∈[0,T ]

‖ψζ(t)‖α ≤ Cε−ζ(α−
1
2

)−κ , (α > 1
2) , (4.8)

E sup
t∈[0,T ]

‖ψ̃ζ(t)− ψζ(t)‖α ≤ Cε2−ζ(α+ 3
2

)−κ , (α > −3
2) . (4.9)

Proof. In view of the estimates

E|θk(t)|2 ≤ Ck−2 , E|θk(t)− θk(s)|2 ≤ C|t− s| , (4.10)

we obtain

E‖ψζ(t)− ψζ(s)‖2α ≤ C|t− s|κ
∑
|k|≤ε−ζ

(1 + k2)α−1+κ

≤ C|t− s|κε−2ζ(α− 1
2

+κ)

and

E‖ψζ(0)‖2α ≤ Cε−2ζ(α− 1
2

) .

The inequality (4.8) thus follows from Lemma 4.1.
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In order to prove (4.9) we argue similarly, but the estimates are slightly more
involved. Write δk := θ̃k − θk so that ψ̃ζ − ψζ =

∑
|k|≤ε−ζ δkek. Using (4.7) and

(4.10) we have for s, t ≥ 0,

E|δk(t)− δk(s)|2 ≤ C|t− s| .

Combining this bound with Lemma 4.2, we infer that for κ ∈ [0, 1
2),

E|δk(t)− δk(s)|2 ≤ C(k−2)κ(ε4k2)1−2κ|t− s|κ = Cε4−8κk2−6κ|t− s|κ .

For κ ∈ (0, 1
3α+ 1

2), we thus obtain

E‖
(
ψ̃ζ − ψζ

)
(t)−

(
ψ̃ζ − ψζ

)
(s)‖2α ≤ C|t− s|κε4−8κ

∑
|k|≤ε−ζ

(1 + k2)α+1−3κ

≤ C|t− s|κε4−ζ(2α+3)−8κ

and similarly

E sup
t∈[0,T ]

‖ψ̃ζ(t)− ψζ(t)‖2α ≤ Cε4−ζ(2α+3)−8κ .

The desired estimate (4.9) now follows from Lemma 4.1. �

Proposition 4.5. Let ζ > 0. For every κ > 0 there exists C > 0 such that

E sup
t∈[0,T ]

Θ(ψ̃ζ(t)) ≤ Cε−1+(ζ−1)+−κ ,

for all ε ∈ (0, 1], where we wrote (ζ − 1)+ def
= 0 ∨ (ζ − 1).

Proof. As in the proof of Propositions 4.3 and 4.4, we shall apply Kolmogorov’s
continuity criterion from Lemma 4.1, this time for L2-valued random fields. It
follows from (4.6) that

E‖D̂εy

(
ψ̃ζ(t)− ψ̃ζ(s)

)
‖2L2 =

∑
|k|>ε−ζ

∣∣∣∣eikεy − 1

εy

∣∣∣∣2E|θ̃k(t)− θ̃k(s)|2
≤ C

∑
k>ε−ζ

1− cos(kεy)

|εky|2
.

Note that, up to a factor ε|y|, this sum can be interpreted as a Riemann sum for the
function H(t)

def
= t−2(1− cos(t)). In fact, since H(t) ≤ 2(1 ∧ t−2),

ε|y|
∑
k>ε−ζ

1− cos(kεy)

|kεy|2
=
∑
k>ε−ζ

ε|y|H(kεy) ≤ 2

∫ ∞
ε1−ζ

(1 ∧ t−2) dt ≤ Cε(ζ−1)+ .

(4.11)

It thus follows that

E‖D̂εy

(
ψ̃ζ(t)− ψ̃ζ(s)

)
‖2L2 ≤ C|εy|−1ε(ζ−1)+ . (4.12)

On the other hand, (4.6) and (4.7) imply that

E|θ̃k(t)− θ̃k(s)|2 ≤ C(1 ∧ k−2)
3
4 |t− s|

1
4 ,



A SPATIAL VERSION OF THE ITÔ-STRATONOVICH CORRECTION 17

and therefore

E‖D̂εy

(
ψ̃ζ(t)− ψ̃ζ(s)

)
‖2L2 =

∑
|k|>ε−ζ

∣∣∣∣eikεy − 1

εy

∣∣∣∣2E|θ̃k(t)− θ̃k(s)|2
≤ C|εy|−2|t− s|

1
4

∑
|k|>ε−ζ

(1 ∧ k−2)
3
4

≤ C|εy|−2|t− s|
1
4 .

(4.13)

Combining (4.12) and (4.13), we find that

E‖D̂εy

(
ψ̃ζ(t)− ψ̃ζ(s)

)
‖2L2 ≤ |εy|−1−κ|t− s|

1
4
κε(1−κ)(ζ−1)+ .

Similarly, we obtain

E‖D̂εyψ̃ζ(0)‖2L2 =
∑
|k|>ε−ζ

∣∣∣∣eikεy − 1

εy

∣∣∣∣2E|θ̃k(0)|2

≤ C
∑
|k|>ε−ζ

1− cos(kεy)

|εky|2
≤ C|εy|−1ε(ζ−1)+ .

In view of Lemma 4.1, the latter two estimates imply that

E sup
t∈[0,T ]

‖D̂εyψ̃ζ(t)‖2L2 ≤ C|εy|−1−κε(1−κ)(ζ−1)+ .

Using this bound, the desired result for Θ(ψ̃ζ(t)) can be obtained easily, since

E sup
t∈[0,T ]

Θ(ψ̃ζ(t)) = E sup
t∈[0,T ]

∫
R
|y|2‖D̂εyψ̃ζ(t)‖2L2 |µ|(dy)

≤
∫

R
|y|2E sup

t∈[0,T ]
‖D̂εyψ̃ζ(t)‖2L2 |µ|(dy)

≤ Cε−1−κ+(1−κ)(ζ−1)+
∫

R
|y|1−κ |µ|(dy)

≤ Cε−1−κ+(1−κ)(ζ−1)+ .

The result now follows by rescaling κ. �

The next and final result of this section involves the term which gives rise to the
correction term in the limiting equation. Before stating the result, we introduce the
notation

Ξyε(u)
def
=
εy2

2
D̂εyu⊗ D̂εyu ,

Λy
def
=

1

2πν

∫
R+

h2(t)

t2f(t)

(
1− cos(yt)

)
dt ,

and

Λyε
def
=

∑
ε−γ<k<ε−χ

Λyε,k
def
=

∑
ε−γ<k<ε−χ

(1− cos(εky))h2(εk)

2πε(1 + νk2f(εk))
.

Note that one has the identities

Ξε(u) =

∫
R

Ξyε(u)µ(dy) , Λ =

∫
R

Λy µ(dy) , EΞyε(ψ̃
χ
γ ) = ΛyεI ,
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where the constant Λ is given by (1.5).

Proposition 4.6. Let α > 1
2 , γ ≤ 1

2 , and χ ≥ 3
2 . For ε ∈ (0, 1], we then have

E sup
t∈[0,T ]

‖Λ− Ξε(ψ̃
χ
γ (t))‖−α ≤ Cε

1
2 .

Proof. The proof is an application of Lemma 4.1 with ξ = Λ−Ξε(ψ̃
χ
γ ). For brevity

we shall write A := Ξε(ψ̃
χ
γ ) and Ay := Ξyε(ψ̃

χ
γ ). We divide the proof into several

steps.
Step 1. First we claim that ξ(t) = Λ−A(t) satisfies the condition (4.1) concern-

ing the equivalence of all q-moments.
To see this, note that ψ̃χγ admits the representation ψ̃(t) =

∑
k αk(t)ek where

each αk(t) is a Gaussian random vector in Rn. As a consequence, for every y ∈ R,
each component of Λyε−Ay is a polynomial of Gaussian random variables of degree
at most two. It thus belongs to the direct sum of Wiener chaoses of order ≤ 2
and the same is true for Λε −A, since each Wiener chaos is a closed subspace of
the space of square integrable random variables. The claim thus follows from the
well-known equivalence of moments for Hilbert space-valued Wiener chaos (see,
e.g., [KW92]).

Step 2. In this step, we estimate how well Λyε approximates Λy. Since |1 −
cosx| ≤ C(1 ∧ x2), we have the bound |Λyε,k| ≤ C

(
εy2 ∧ (εk2)−1

)
for some

constant C. As an immediate consequence, we have the bound∣∣∣Λyε −∑
k≥1

Λyε,k

∣∣∣ ≤ C(ε1−γy2 + εχ−1
)
. (4.14)

Define now the function

Φy(t) =
(1− cos(yt))h2(t)

2πνt2f(t)
,

so that, since h2/f is bounded by assumption, we obtain the bound

|Λyε,k − εΦy(εk)| ≤ C εy
2

k2
.

Combining this bound with (4.14), we have∣∣∣Λyε −∑
k≥1

εΦy(εk)
∣∣∣ ≤ C(ε1−γy2 + εχ−1

)
.

At this stage, we recall that for any function Φ of bounded variation, one has the
approximation ∣∣∣∑

k≥1

εΦ(εk)−
∫ ∞

0
Φ(t) dt

∣∣∣ ≤ ε‖Φ‖BV ,

where ‖Φ‖BV denotes the variation of Φ over R+. Furthermore, for any pair Φ, Ψ,
we have the bound

‖ΦΨ‖BV ≤ ‖Φ‖L∞‖Ψ‖BV + ‖Ψ‖L∞‖Φ‖BV . (4.15)

If we set Ψy(t) = (1− cos(yt))/t2, we have

‖Ψy‖BV =

∫ ∞
0
|Ψ′y(t)| dt =

∫ ∞
0

|yt sin yt+ 2 cos yt− 2|
t3

dt



A SPATIAL VERSION OF THE ITÔ-STRATONOVICH CORRECTION 19

≤ C|y|3
∫ ∞

0

(
1 ∧ 1

y2t2

)
dt ≤ Cy2 .

Since Ψ(0) = y2/2, a similar bound holds for its L∞ norm, and we conclude from
(4.15) that

‖Φy‖BV ≤ Cy2 .

It follows immediately that we have the bound

|Λyε − Λy| ≤ C
(
ε1−γy2 + εy2 + εχ−1

)
. (4.16)

Step 3. We now use these bounds in order to obtain control over ‖Λ−A‖2−α for
a fixed time t ≥ 0 (which is often suppressed in the notation).

In order to shorten the notations, note that, we can write

ψ̃(x, t) =
∑
k∈Z

h(ε|k|)√
2
√

1 + νk2f(ε|k|)
ηk(t) ek(x) ,

where the ηk are a sequence of i.i.d. Cn-valued Ornstein-Uhlenbeck processes with

E
(
ηk(t)⊗ η`(s)

)
= E t−sk δk,−`I , E tk = exp(−(1 + νk2f(ε|k|))|t|) ,

and satisfying the reality condition η−k = η̄k. Here, I denotes the identity matrix.
We will also use the notational shortcut

At
k,`

def
= ηk(t)⊗ η`(t) .

Set now

qkε =
eikεy − 1√

2

h(ε|k|)√
1 + νk2f(ε|k|)

,

as a shorthand. With all of these notations in place, it follows from the definition of
Λyε that

Ay(t)− ΛyεI =
∑

ε−γ<|k|,|`|≤ε−χ
qkε q

`
ε

(
At
k,` − δk,−`I

)
ek+` ,

As a consequence, we have the identity

E‖ΛyεI −Ay(t)‖2−α =
∑
k∈Z

(1 + |k|2)−α
∑
`,m

q`εq
k−`
ε q̄mε q̄

k−m
ε

× E tr
((

At
`,k−` − δk,0I

)(
Āt
m,k−m − δk,0I

))
,

where the second sum ranges over all `,m ∈ Z for which `, k− `,m, k−m belong
to (ε−γ , ε−χ]. A straightforward case analysis allows to check that

E tr
((

At
`,k−` − δk,0I

)(
Āt
m,k−m − δk,0I

))
= nδ`,m + n2δ`,k−m , (4.17)

so that

E‖ΛyεI −Ay(t)‖2−α ≤ C
∑
k∈Z

(1 + |k|2)−α
∑
`∈Z

|q`ε|2|qk−`ε |2 .

Note now that there exists a constant C such that the bound

|qkε | ≤ C
√
ε
(
|y| ∧ 1

ε|k|

)
≤ Cε

1−β
2 |k|−

β
2 |y|1−

β
2 ,



20 MARTIN HAIRER AND JAN MAAS

is valid for all ε < 1, k ∈ Z, y ∈ R, and β ∈ [0, 1]. It follows that there exists a
constant C > 0 such that we have the bound

E‖ΛyεI −Ay(t)‖2−α ≤ C
∑
`,m≥1

|q`ε|2|qmε |2

|`+m|2α
≤ C

∑
`,m≥1

|q`ε|2|qmε |2

|`|α|m|α

≤ Cε2−2β
∑
`,m≥1

|y|4−2β

|`|α+β|m|α+β
≤ Cε|y|3 ,

where we made the choice β = 1
2 to obtain the last bound, using the fact that α > 1

2

by assumption. Combining this bound with (4.16), the constraints γ ≤ 1
2 and χ ≥ 3

2 ,
and using the fact that µ has finite fourth moment, we have

E‖ΛI −A(t)‖2−α ≤ C
∫

E‖Λy −Ay(t)‖2−α |µ|(dy)

≤ C
∫

E‖Λyε −Ay(t)‖2−α |µ|(dy) + Cε ≤ Cε .

Step 4. Finally we shall estimate E‖A(t) − A(s)‖2−α. Similarly to (4.17), this
involves the identity

E tr
(
At
`,k−`Ā

s
m,k−m

)
= nδk,0 + (nδl,m + n2δl,k−m)E t−s` E t−sk−m .

As a consequence, we infer that

Dk`m(t, s)
def
= E tr

((
At
`,k−` −As

`,k−`
)(

Āt
m,k−m − Ās

m,k−m
))

= 2(nδ`,m + n2δ`,k−m)(1− E t−s` E t−sk−m) .

It thus follows that for any δ ∈ [0, 1],

Dk`m(t, s)

≤ C(δ`,m + δ`,k−m)
(

1 ∧
(
2 + ν`2f(ε|`|) + ν(k −m)2f(ε|k −m|)

)
|t− s|

)
≤ C(δ`,m + δ`,k−m)|t− s|δ

(
1 + `2δf(ε|`|)δ + (k −m)2δf(ε|k −m|)δ

)
.

Using this bound we obtain

E
∥∥Ay(t)−Ay(s)∥∥2

−α =
∑
k∈Z

(1 + |k|2)−α
∑
`,m

q`εq
k−`
ε q̄mε q̄

k−m
ε Dk`m(t, s)

≤
∑
k∈Z

(1 + |k|2)−α
∑
`

|q`ε|2|qk−`ε |2
(
Dk``(t, s) +Dk,`,k−`(t, s)

)
≤ C|t− s|δ

∑
k∈Z

(1 + |k|2)−α
∑
`

|q`ε|2|qk−`ε |2

×
(

1 + `2δf(ε|`|)δ + |k − `|2δf(ε|k − `|)δ
)
.

Note that this expression is almost the same as in Step 3. Using the calculations
done there and taking into account that h and h/f2 are bounded functions, we infer
that

E‖Ay(t)−Ay(s)‖2−α = C|t− s|δ
∑
`,m≥1

|q`ε|2|qmε |2

|`|α−2δ|m|α−2δ
≤ C|t− s|δε|y|3 ,
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and therefore, using Jensen’s inequality (which can be applied since |µ| has finite
mass), and Fubini’s theorem,

E‖A(t)−A(s)‖2−α = E
∥∥∥∫

R

(
Ay(t)−Ay(s)

)
µ(dy)

∥∥∥2

−α

≤ C
∫

R
E‖Ay(t)−Ay(s)‖2−α |µ|(dy)

≤ Cε|t− s|δ
∫

R
|y3| |µ|(dy) ≤ Cε|t− s|δ ,

which is the desired bound.
The result follows by combining these steps with Lemma 4.1. �

5. CONVERGENCE OF THE APPROXIMATIONS

This last section is devoted to the convergence result itself. Recall that we are
considering a number of intermediate processes v(j)

ε with j = 1, . . . , 4 defined
in (2.10). This section is correspondingly broken into five subsections, with the
jth subsection yielding a bound on ‖v(j)

ε − v(j−1)
ε ‖α. To prove these bounds, we

shall introduce in each step a stopping time that forces the difference between
the processes considered in that step to remain bounded. We then show that this
difference actually vanishes as ε→ 0 with an explicit rate. As a consequence, the
process actually doesn’t “see” the stopping time with high probability.

5.1. From v̄γ to v(1)
ε . Define

τK1 := τK ∧ inf{t ≤ T : ‖v(1)
ε (t)− v̄γ(t)‖α ≥ K} .

We shall show that for t ≤ τK , the Hα-norm of v(1)
ε (t) − v̄γ(t) is controlled by

the L∞-norm of ψγ , which is of order ε
γ
2
−κ for any κ > 0, as shown in Section

4. The proof uses the mild formulations of the equations for v(1)
ε and v̄γ(t) as well

as the regularising properties of the semigroup S. Note that the next proposition
would still be true if we had replaced the Hα-norm in the definition of τK1 by the
L∞-norm. However, in the proof of Proposition 5.2 below it will be important to
have a bound on v(1)

ε in Hα.

Proposition 5.1. For κ > 0 we have

lim
ε→0

P
(

sup
t≤τK1

‖v(1)
ε (t)− v̄γ(t)‖α > ε

γ
2
−κ
)

= 0 .

Proof. Let 0 ≤ s ≤ t ≤ τ∗. It follows from (2.3) and (3.10a) that %ε := v
(1)
ε − v̄γ

satisfies the equation

%ε(t) = S(t− s)%ε(s) +

∫ t

s
S(t− r)(σ1 + ∂xσ

2
ε)(r) dr ,

where

σ1
ε := F (v̄γ + %ε)− F (v̄γ + ψγ) ,

σ2
ε := G(v̄γ + %ε)−G(v̄γ + ψγ) .
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Lemma 3.3 yields the estimate

‖%ε(t)‖α ≤ ‖%ε(s)‖α + C(t− s)
1
2

(1−α) sup
r∈(s,t)

‖(σ1
ε + ∂xσ

2
ε)(r)‖−1

≤ ‖%ε(s)‖α + C(t− s)
1
2

(1−α) sup
r∈(s,t)

‖σ1
ε(r)‖L∞ + ‖σ2

ε(r)‖L∞ .

Since v̄γ , %ε, and ψγ are bounded in L∞-norm for r ≤ τK1 , and F,G are C3, it
follows that

‖σ1
ε(r)‖L∞ + ‖σ2

ε(r)‖L∞ ≤ CK‖%ε(r)‖L∞ + CK‖ψγ(r)‖L∞ ,
from which we infer that

‖%ε(t)‖α ≤ ‖%ε(s)‖α + C ′K(t− s)
1
2

(1−α) sup
r∈(s,t)

(
‖%ε(r)‖L∞ + ‖ψγ(r)‖L∞

)
.

Choose δK > 0 so small that C ′Kδ
1
2

(1−α)

K ≤ 1
2 , and set for k ≥ 0,

rk := sup
{
‖%ε(t)‖α : t ∈ [kδK ∧ τK1 , (k + 1)δK ∧ τK1 ]

}
.

Taking into account that Hα ⊆ L∞, we obtain the inequality

rk+1 ≤ rk +
1

2
rk+1 +

1

2
sup
t∈[0,T ]

‖ψγ(t)‖L∞ ,

which reduces to

rk+1 ≤ 2rk + sup
t∈[0,T ]

‖ψγ(t)‖L∞ .

Combined with the estimate

r0 ≤ 2 sup
r≤δK∧τK1

‖ψγ(r)‖L∞

which can be derived similarly, it then follows that

sup
t∈[0,τK1 ]

‖%ε(t)‖α ≤ sup
0≤k≤T/δK

rk ≤ CK sup
t∈[0,T ]

‖ψγ(t)‖L∞ ,

which together with Proposition 4.3 implies the desired result. �

5.2. From v
(1)
ε to v(2)

ε . For the purpose of this section, we define the stopping time

τK2 := τK1 ∧ inf{t ≤ T : ‖v(2)
ε (t)− v(1)

ε (t)‖α ≥ K} ,

as well as the exponent

α̃
def
= (1− γ)α+

γ

2
=

2

3
.

Proposition 5.2. For κ > 0 we have

lim
ε→0

P
(

sup
t≤τK2

‖v(2)
ε (t)− v(1)

ε (t)‖α > εα̃−κ
)

= 0 .

Proof. Let 0 ≤ s ≤ t ≤ τ∗ and note that %ε := v
(2)
ε − v(1)

ε satisfies

%ε(t) = S(t− s)%ε(s) +

∫ t

s
S(t− r)σε(r) dr ,

where

σε := F (v(2)
ε )− F (v(1)

ε ) +Dε(G(v(1)
ε + %ε))− ∂xG(v(1)

ε ) .
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From the definition of τK2 we know that v(1)
ε and %ε are bounded in L∞ by a constant

depending on K. Moreover, we have the bound ‖v(1)
ε ‖α ≤ CKε−γ(α− 1

2
)−κ. Using

these facts together with Corollary 3.7 we obtain, for r ≤ τK2 ,

‖σε‖−1 ≤ ‖F (v(2)
ε )− F (v(1)

ε )‖L∞

+ ‖(Dε − ∂x)G(v(1)
ε )‖−1 + ‖Dε(G(v(1)

ε + %ε)−G(v(1)
ε ))‖−1

≤ CK‖%ε‖L∞ + CKε
α(1 + ‖v(1)

ε ‖α) + ‖G(v(1)
ε + %ε)−G(v(1)

ε )‖L∞

≤ CK(εα̃−κ + ‖%ε‖L∞) ,

hence

‖%ε(t)‖α ≤ ‖%ε(s)‖α + C(t− s)
1
2

(1−α) sup
r∈(s,t)

‖σε(r)‖−1

≤ ‖%ε(s)‖α + CK(t− s)
1
2

(1−α) sup
r∈(s,t)

(
εα̃−κ + ‖%ε(r)‖L∞

)
.

Arguing as in the proof of Proposition 5.1, it follows that

sup
t∈[0,τK2 ]

‖%ε(t)‖α ≤ CKεα̃−κ ,

which immediately yields the desired result. �

5.3. From v
(2)
ε to v(3)

ε . Define

τK3 := τK2 ∧ inf{t ≤ T : ‖v(3)
ε (t)− v(2)

ε (t)‖α ≥ K} .

In this case, the singularity (t− s)−
1
2
α which arises in the proof below, prevents

us from arguing as in Proposition 5.1. We nevertheless have:

Proposition 5.3. For κ > 0 we have

lim
ε→0

P
(

sup
t≤τK3

‖v(3)
ε (t)− v(2)

ε (t)‖α > εζ−κ
)

= 0 ,

where the exponent ζ is given by

ζ
def
= α̃ ∧ (3

2 − α) ∧
(
2− γ(α+ 3

2)
)

=
2

3
.

Remark 5.4. The exponent ζ arises by collecting the bounds (5.2), (5.3), and (5.5).

Proof. Let 0 ≤ s ≤ t ≤ τ∗. It follows from (3.10b) and (3.10c) that %ε :=

v
(3)
ε − v(2)

ε satisfies

%ε(t) = Sε(t−s)%ε(s)+(Sε(t−s)−S(t−s))v(2)
ε (s)+R1(s, t)+R2(s, t) , (5.1)

where

R1(s, t)
def
= (ψ̃γ(t)− ψγ(t))−

(
Sε(t− s)ψ̃γ(s)− S(t− s)ψγ(s)

)
and

R2(s, t) :=

∫ t

s
(Sε(t− r)− S(t− r))

(
F (v(3)

ε (r)) +DεG(v(3)
ε (r)

)
dr

+

∫ t

s
S(t− r)

(
F (v(3)

ε (r))− F (v(2)
ε (r))

+DεG(v(3)
ε (r))−DεG(v(2)

ε (r))
)
dr .
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We shall first prove a bound onR1(s, t). Using both inequalities from Lemma
3.4, we obtain

‖
(
Sε(t− s)ψ̃γ(s)− S(t− s)ψγ(s)

)
‖α

≤ ‖Sε(t− s)
(
ψ̃γ(s)− ψγ(s)

)
‖α + ‖

(
Sε(t− s)− S(t− s)

)
ψγ(s)‖α

≤ C‖
(
ψ̃γ(s)− ψγ(s)

)
‖α + Cε2‖ψγ(s)‖α+2 ,

and therefore

‖R1(s, t)‖α ≤ ‖
(
ψ̃γ(t)− ψγ(t)

)
‖α + C‖

(
ψ̃γ(s)− ψγ(s)

)
‖α

+ Cε2‖ψγ(s)‖α+2 .

It thus follows from Proposition 4.4 that

E sup
s,t∈[0,T ]

‖R1(s, t)‖α ≤ Cε2−γ(α+ 3
2

)−κ . (5.2)

We shall now prove a bound on R2(s, t). For this purpose, we note that the
definitions of the various stopping times imply that v(2)

ε (t) is bounded in Hα-norm
by CKε−γ(α− 1

2
)−κ. Using this fact, together with Lemmas 3.4, 3.5 and 3.2, we

obtain ∥∥∥∥∫ t

s
(Sε(t− r)− S(t− r))

(
F (v(3)

ε (r)) +DεG(v(3)
ε (r))

)
dr

∥∥∥∥
α

≤ εα
∫ t

s
(t− r)−

1
2

(1+α)‖F (v(3)
ε (r)) +DεG(v(3)

ε (r))‖α−1 dr

≤ Cεα(t− s)
1
2

(1−α) sup
r∈[s,t]

(
‖F (v(3)

ε (r))‖α + ‖G(v(3)
ε (r))‖α

)
≤ CKεα(t− s)

1
2

(1−α)(1 + sup
r∈[s,t]

‖v(3)
ε (r)‖α)

≤ CKεα(t− s)
1
2

(1−α)
(
1 + sup

r∈[s,t]
(‖v(2)

ε (r)‖α + ‖%ε(r)‖α)
)

≤ CKεα̃−κ(t− s)
1
2

(1−α) .

Furthermore, taking into account the L∞-bounds on v(2)
ε and %ε enforced by the

stopping times, Lemma 3.5 implies that∥∥∥∥∫ t

s
S(t− r)

(
F (v(3)

ε (r))− F (v(2)
ε (r)) +DεG(v(3)

ε (r))−DεG(v(2)
ε (r))

)
dr

∥∥∥∥
α

≤ C(t− s)
1
2

(1−α) sup
r∈(s,t)

‖F (v(3)
ε (r))− F (v(2)

ε (r))

+DεG(v(3)
ε (r))−DεG(v(2)

ε (r))‖−1

≤ C(t− s)
1
2

(1−α) sup
r∈(s,t)

(
‖F (v(3)

ε (r))− F (v(2)
ε (r))‖L∞

+ ‖G(v(3)
ε (r))−G(v(2)

ε (r))‖L∞
)

≤ CK(t− s)
1
2

(1−α) sup
r∈(s,t)

‖%ε(r)‖L∞ .
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It thus follows that

‖R2(s, t)‖α ≤ C ′K(t− s)
1
2

(1−α)
(
εα̃−κ + sup

r∈(s,t)
‖%ε(r)‖L∞

)
, (5.3)

where we gave the constant a name, since it will be reused below.

Choose δK ∈ (0, 1) sufficiently small so that C ′K
(
δ

1
2

(1−α)

K + δ
1
2
α

K

)
≤ 1

4 . For
k ≥ 0 put `k := kδK ∧ τK3 , and for k ≥ 1 set

rk := sup
{
‖%ε(t)‖α : t ∈ [`k−1, `k+1]

}
.

Our next aim is to find a bound for r1. Observe that, when s = 0, (5.1) simplifies
to

%ε(t) = (Sε(t)− S(t))v0 + (ψ̃γ(t)− ψγ(t)) +R2(0, t) , (5.4)

with R2 defined as previously. Using Lemma 3.4 and the definition of τK , we
obtain

‖(Sε(t)− S(t))v0‖α ≤ Cε
3
2
−α−κ‖v0‖ 3

2
−κ ≤ CKε

3
2
−α−κ . (5.5)

Since t ≤ 2δK and C ′Kδ
1
2

(1−α)

K ≤ 1
4 , it follows from (5.3) and (5.4) that

r1 ≤ CKε
3
2
−α−κ + sup

t∈[0,T ]
‖ψ̃γ(t)− ψγ(t)‖α +

1

2
(εα̃−κ + r1) ,

hence, by definition of τK ,

r1 ≤ CKε( 3
2
−α)∧(2−γ(α+ 3

2
))∧α̃ε−κ = CKε

ζ−κ , (5.6)

where ζ is defined as in the statement of the result.
Next we shall prove a recursive bound for rk. Note that the nonnegativity of the

function f in the definition of Sε implies that

‖Sε(t− s)%ε(s)‖α ≤ ‖%ε(s)‖α .

Furthermore, by Lemma 3.4 and the fact that ‖v(2)
ε ‖α ≤ CKε

−γ(α− 1
2

)−κ before
time τK3 , we have

‖(Sε(t− s)− S(t− s))v(2)
ε (s)‖α ≤ Cεα(t− s)−

1
2
α‖v(2)

ε (s)‖α
≤ CK(t− s)−

1
2
αεα̃−κ .

Combining these bounds with (5.1) and (5.3), we find that

‖%ε(t)‖α ≤ ‖%ε(s)‖α + CK(t− s)−
1
2
αεα̃−κ + ‖R1(s, t)‖α

+ C ′K(t− s)
1
2

(1−α)
(
εα̃−κ + sup

r∈(s,t)
‖%ε(r)‖α

)
.

Taking k ≥ 1, s = `k−1, and t ∈ [`k, `k+2], it then follows, since |t−s| ∈ [δK , 3δK ]

and C ′Kδ
1
2

(1−α) ≤ 1
2 , that

‖%ε(t)‖α ≤ ‖%ε(`k−1)‖α + CKε
α̃−κ + ‖R1(`k−1, t)‖α + 1

2ε
α̃−κ + 1

2rk+1 .

Taking the supremum over t ∈ [`k, `k+2], we obtain

rk+1 ≤ rk + CKε
α̃−κ + sup

s,t∈[0,T ]
‖R1(s, t)‖α + 1

2rk+1 ,
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hence

rk+1 ≤ 2rk + CKε
α̃−κ + 2 sup

s,t∈[0,T ]
‖R1(s, t)‖α . (5.7)

It readily follows from (5.6) and (5.7) that

sup
t∈[0,τK3 ]

‖%ε(t)‖α = sup
1≤k≤dT/δKe

rk ≤ CK
(
εζ−κ + εα̃−κ + sup

s,t∈[0,T ]
‖R1(s, t)‖α

)
,

hence the result follows in view of the bound onR1(s, t). �

5.4. From v
(3)
ε to v(4)

ε . Define

τK4 := τK3 ∧ inf{t ≤ T : ‖v(4)
ε (t)− v(3)

ε (t)‖α ≥ K} .

Proposition 5.5. For κ > 0 we have

lim
ε→0

P
(

sup
t≤τK4

‖v(4)
ε (t)− v(3)

ε (t)‖α > εξ−κ
)

= 0 ,

where

ξ
def
= γ

2 ∧
(
α̃− 1

2

)
∧
(

1
2 − χ(α− 1

2)
)

=
1

8
.

Remark 5.6. Similarly to above, the exponent ξ arises from the bounds (5.9)–(5.14).

Proof. Let 0 ≤ s ≤ t ≤ τ∗. It follows from (3.10d) and (3.10c) that %ε :=

v
(4)
ε − v(3)

ε satisfies

%ε(t) = Sε(t− s)%ε(s) +

∫ t

s
Sε(t− r)σε(r) dr ,

where

σε := F (v(4)
ε + ψ̃χγ )− F (v(3)

ε )

+∇G(v(4)
ε + ψ̃χγ )Dε(v

(4)
ε + ψ̃χγ )−DεG(v(3)

ε ) + Λ∆G(v(3)
ε ) .

The definition of Dε together with (1.3) imply that for any function u the following
identity holds:

DεG(u)(x) = ∇G(u(x))Dεu(x)

+

∫
R

εy2

2
D2G(u(x))[D̂εyu(x), D̂εyu(x)]µ(dy)

+

∫
R
ε2y3

∫ 1

0

∫ t

0

∫ s

0
D3G

(
(1− r)u(x) + ru(x+ εy)

)
[D̂εyu(x), D̂εyu(x), D̂εyu(x)] dr ds dt µ(dy) ,

(5.8)

where the operator D̂ε is defined by taking µ := δ1 − δ0 in the definition of Dε, i.e.,
D̂εu(x) = ε−1(u(x+ ε)− u(x)). As a consequence, we may write

σε = F (v(4)
ε + ψ̃χγ )− F (v(3)

ε ) +Dε(G(v(4)
ε + ψ̃χγ )−G(v(3)

ε ))

+ (Λ∆G(v(3)
ε )−A(u(4)

ε , u(4)
ε ))−B

= F (v(4)
ε + ψ̃χγ )− F (v(3)

ε ) +Dε(G(v(4)
ε + ψ̃χγ )−G(v(3)

ε ))

−A(v(4)
ε , v(4)

ε )− 2A(v(4)
ε , ψ̃χγ ) + (Λ∆G(v(3)

ε )−A(ψ̃χγ , ψ̃
χ
γ ))−B ,
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where we have used

A(v, w)(x)
def
=

∫
R

εy2

2
D2G(u(4)

ε (x))[D̂εyv(x), D̂εyw(x)]µ(dy) ,

B(x)
def
=

∫
R
ε2y3

∫ 1

0

∫ t

0

∫ s

0
D3G

(
(1− r)u(4)

ε (x) + ru(4)
ε (x+ εy)

)
[D̂εyu

(4)
ε (x), D̂εyu

(4)
ε (x), D̂εyu

(4)
ε (x)] dr ds dt µ(dy) ,

and u(4)
ε := v

(4)
ε + ψ̃χγ .

Our next aim is to prove the estimates (5.9)–(5.14) below in order to bound
‖σε‖−1.
First term. Since v(4)

ε , ψ̃χγ and %ε are bounded in L∞ by definition of τK4 , it follows
that

‖F (v(4)
ε + ψ̃χγ )− F (v(3)

ε )‖−1 ≤ C‖F (v(4)
ε + ψ̃χγ )− F (v(4)

ε − %ε)‖L∞

≤ CK(‖ψ̃χγ ‖L∞ + ‖%ε‖L∞)

≤ CK(ε
γ
2
−κ + ‖%ε‖α) . (5.9)

Second term. We use Lemma 3.5 and the fact that v(4)
ε , ψ̃χγ and %ε are bounded in

L∞ by definition of τK4 , to estimate

‖Dε(G(v(4)
ε + ψ̃χγ )−G(v(3)

ε ))‖−1 ≤ C‖G(v(4)
ε + ψ̃χγ )−G(v(4)

ε − %ε)‖L∞

≤ CK(‖ψ̃χγ ‖L∞ + ‖%ε‖L∞)

≤ CK(ε
γ
2
−κ + ‖%ε‖α) . (5.10)

Third and fourth term. First we note that for arbitrary functions v, w, one has

‖A(v, w)‖−1 ≤ C‖A(v, w)‖L1 ≤ Cε‖D2G(u(4)
ε )‖L∞

√
Θε(v)Θε(w) .

Since ‖u(4)
ε (t)‖L∞ ≤ CK for t ≤ τK4 , we have

‖D2G(u(4)
ε )‖L∞ ≤ CK .

Furthermore, we observe that ‖v(4)
ε ‖α ≤ CKε

−γ(α− 1
2

)−κ before time τK4 . Using
this bound together with Lemma 3.5 and (1.3), we estimate

Θε(v
(4)
ε ) =

∫
R
y2‖D̂εyv

(4)
ε ‖2L2 |µ|(dy)

≤ CK
∫

R
y2|εy|2(α−1)‖v(4)

ε ‖2α |µ|(dy)

≤ CK
∫

R
y2|εy|2(α−1)ε−2γ(α− 1

2
)−2κ |µ|(dy)

≤ CKε2α̃−2−κ .

Moreover, by definition of the stopping time τK we have

Θε(ψ̃
χ
γ ) ≤ Θε(ψ̃γ) ≤ CKε−1−κ.

Putting everything together, we obtain

‖A(v(4)
ε , v(4)

ε )‖−1 ≤ CKε2α̃−1−2κ (5.11)
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and

‖A(v(4)
ε , ψ̃χγ )‖−1 ≤ CKεα̃−

1
2
−2κ . (5.12)

Fifth term. Finally we estimate Λ∆G(v
(3)
ε )−A(ψ̃χγ , ψ̃

χ
γ ). By definition of τKε , we

have ‖ψ̃χγ ‖α ≤ CKε−χ(α− 1
2

)−κ before time τK4 . Since ‖v(4)
ε ‖α ≤ CKε−γ(α− 1

2
)−κ

as observed before, we thus have

‖u(4)
ε ‖α ≤ CKε−χ(α− 1

2
)−κ .

Furthermore, since α > 1
2 , there exists a constant C > 0 such that we have the

bound

‖Λ∆G(u(4)
ε )−A(ψ̃χγ , ψ̃

χ
γ )‖−α =

∥∥∥ tr
(
D2G(u(4)

ε )
(
ΛI − Ξε(ψ̃

χ
γ )
))∥∥∥

−α

≤ C‖D2G(u(4)
ε )‖α‖ΛI − Ξε(ψ̃

χ
γ )‖−α .

Since the stopping time τK enforces that ‖ΛI − Ξε(ψ̃
χ
γ )‖−α ≤ CKε

1
2 , we infer

that

‖Λ∆G(u(4)
ε )−A(ψ̃χγ , ψ̃

χ
γ )‖−α ≤ CKε

1
2
−χ(α− 1

2
)−κ .

Since u(4)
ε − v(3)

ε = %ε + ψ̃χγ , we have by definition of τK ,

‖∆G(u4
ε)−∆G(v(3)

ε )‖−α ≤ ‖∆G(u4
ε)−∆G(v(3)

ε )‖L∞

≤ CK‖%ε‖L∞ + CK‖ψ̃χγ ‖L∞

≤ CK‖%ε‖α + CKε
γ
2
−κ .

Putting these bounds together, we obtain

‖Λ∆G(v(3)
ε )−A(ψ̃χγ , ψ̃

χ
γ )‖−α ≤ CK

(
ε

1
2
−χ(α− 1

2
)−κ + ε

γ
2
−κ + ‖%ε‖α

)
. (5.13)

Sixth term. To estimate B, we use the fact that ‖u(4)
ε (t)‖L∞ ≤ CK for t ≤ τK4 , so

that one has the bound

‖B‖L1 ≤ CK
∫ ∫

R
ε2y3|D̂εyu

(4)
ε (x)|3 |µ|(dy) dx.

We will split this expression into two parts, using the fact that u(4)
ε = ψ̃χγ + v

(4)
ε .

First, using the fact that Θ(ψ̃χγ ) ≤ CKε
1−κ before time τK4 by definition of the

stopping time τK , we find that∫ ∫
R
ε2y3|D̂εyψ̃

χ
γ (x)|3 |µ|(dy) dx

≤ 2‖ψ̃χγ ‖L∞
∫ ∫

R
εy2|D̂εyψ̃

χ
γ (x)|2 |µ|(dy) dx

= 2ε‖ψ̃χγ ‖L∞Θ(ψ̃χγ ) ≤ CKε−2κ‖ψ̃χγ ‖L∞ ≤ CKε
γ
2
−3κ .

Second, using the fact that H
1
6 ⊆ L3, Lemma 3.5 and the fact that ‖v(4)

ε ‖α ≤
CKε

−γ(α− 1
2

)−κ, we obtain∫ ∫
R
ε2y3|D̂εyv

(4)
ε (x)|3 |µ|(dy) dx ≤ Cε2

∫
R
|y|3‖D̂εyv

(4)
ε ‖31

6

|µ|(dy)

≤ Cε3α− 3
2

∫
R
|y|3α−

1
2 |µ|(dy) ‖v(4)

ε ‖3α
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≤ CKε3α̃− 3
2
−3κ .

It thus follows that

‖B‖L1 ≤ CKε
γ
2
−3κ + CKε

3(α̃− 1
2

)−3κ . (5.14)

Combining the inequalities (5.9)–(5.13), we find that

sup
r∈(s,t)

‖σε(r)‖−1 ≤ CK
(
ε
γ
2
−3κ + εα̃−

1
2
−2κ + ε

1
2
−χ(α− 1

2
)−κ + sup

r∈(s,t)
‖%ε(r)‖α

)
,

and the result now follows as in Proposition 5.2. �

5.5. From v
(4)
ε to ṽγ . Define

τK5 := τK4 ∧ inf{t ≤ T : ‖ṽγ(t)− v(4)
ε (t)‖α ≥ K} .

Proposition 5.7. For κ > 0 we have

lim
ε→0

P
(

sup
t≤τK5

‖ṽγ(t)− v(4)
ε (t)‖α > ε

1
2
χ− 1

2
−κ
)

= 0 .

Proof. Let 0 ≤ s ≤ t ≤ τ∗. It follows from (2.4) and (3.10d) that %ε := ṽγ − v(4)
ε

satisfies

%ε(t) =

∫ t

s
Sε(t− r)σε(r) dr ,

where

σε := ∇G(ṽγ + ψ̃γ)Dε(ṽ
γ + ψ̃γ)−∇G(ṽγ + ψ̃χγ − %ε)Dε(ṽ

γ + ψ̃χγ − %ε)

+ F (ṽγ + ψ̃γ)− F (ṽγ + ψ̃χγ − %ε) .

In order to estimate σε we use (5.8) to write

σε = DεG(ṽγ + ψ̃γ)−DεG(ṽγ + ψ̃χγ − %ε)

−
∫

R

εy2

2

(
D2G(uε)−D2G(u(4)

ε )
)
[D̂εyuε, D̂εyuε]µ(dy)

−
∫

R

εy2

2
D2G(u(4)

ε )[D̂εy(uε + u(4)
ε ), D̂εy(uε − u(4)

ε )]µ(dy)

− ε2
(
Rε(uε, uε)−Rε(u(4)

ε , u(4)
ε )
)

+ F (ṽγ + ψ̃γ)− F (ṽγ + ψ̃χγ − %ε)
=: σε,1 + . . .+ σε,5 .

where uε := ṽγ + ψ̃γ , u(4)
ε := v

(4)
ε + ψ̃χγ , and

Rε(u
1, u2)(x) :=

∫
R
ε2y3

∫ 1

0

∫ t

0

∫ s

0
D3G((1− r)u1(x) + ru1(x+ εy))

[D̂εyu
2, D̂εyu

2, D̂εyu
2] dr ds dt dµ(y) .

We shall now estimate σε,1, . . . , σε,5 individually.
First term. First we observe that ṽγ , ψ̃γ , ψ̃χγ , and %ε are bounded in L∞ before
time τK5 . Using Lemma 3.5, the embedding Hα ⊆ L∞, and the definition of the
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stopping time to bound ‖ψ̃χ‖L∞ , we obtain

‖σε,1‖−1 = ‖Dε(G(ṽγ + ψ̃γ)−G(ṽγ + ψ̃χγ − %ε))‖−1

≤ C‖G(ṽγ + ψ̃γ)−G(ṽγ + ψ̃χγ − %ε)‖L∞

≤ CK(‖ψ̃χ‖L∞ + ‖%ε‖L∞)

≤ CK(ε
1
2
χ−κ + ‖%ε‖α) .

(5.15)

Second term. Using Lemma 3.5 and the fact that εγ(α− 1
2

)+κ‖ṽγ‖α is bounded before
time τK5 , we estimate

Θε(ṽ
γ) =

∫
R
y2‖D̂εyṽ

γ‖2L2 |µ|(dy)

≤ CK
∫

R
y2|εy|2(α−1)‖ṽγ‖2α |µ|(dy)

≤ CK
∫

R
y2|εy|2(α−1)ε−2γ(α− 1

2
)−2κ |µ|(dy)

≤ CKε2α̃−2−κ ,

and by the definition of the stopping time τK ,

Θε(ψ̃γ) ≤ CKε−1−κ .

As a consequence,

Θε(uε) ≤ 2
(
Θε(ṽ

γ) + Θε(ψ̃γ)
)
≤ CK

(
ε2α̃−2−κ + ε−1−κ) ≤ ε−1−κ . (5.16)

Note that ‖uε‖L∞ and ‖u(4)
ε ‖L∞ are bounded before time τK5 . Using thatL1 ⊆ H−1

we obtain

‖σε,2‖−1 ≤ ‖σε,2‖L1 ≤ ε‖D2G(uε)−D2G(u(4)
ε )‖L∞Θε(uε)

≤ CKε−2κ‖uε − u(4)
ε ‖L∞

≤ CKε−2κ
(
‖%ε‖L∞ + ‖ψ̃χ‖L∞

)
≤ CKε−2κ

(
‖%ε‖α + ε

1
2
χ−κ) .

(5.17)

Third term. By Lemma 3.5 we have

Θε(%ε) =

∫
R
y2‖D̂εy%ε‖2L2 |µ|(dy)

≤ C
∫

R
y2|εy|2(α−1)‖%ε‖2α |µ|(dy) ≤ Cε2α−2‖%ε‖2α .

(5.18)

Observe that uε + u
(4)
ε = 2ṽγ − %ε + ψ̃γ + ψ̃χγ and uε − u(4)

ε = ψ̃χ + %ε. Taking
into account that

ε1+κΘε(ψ̃γ), ε1+κΘε(ψ̃γ), ε2−χ+κΘε(ψ̃χ), ‖%ε‖α

are all bounded before time τK5 , we obtain

Θε(uε + u(4)
ε ) ≤ C

(
Θε(ṽ

γ) + Θε(%ε) + Θε(ψ̃γ) + Θε(ψ̃
χ
γ )
)

≤ CK
(
ε2α̃−2−κ + ε2α−1 + ε−1−κ) ≤ CKε−1−κ ,

(5.19)
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and
Θε(uε − u(4)

ε ) ≤ C
(
Θε(ψ̃χ) + Θε(%ε)

)
≤ CKεχ−2−κ + Cε2α−2‖%ε‖2α .

(5.20)

Using that ‖u(4)
ε ‖L∞ ≤ CK before time τK5 , we obtain

‖σε,3‖−1 ≤ ‖σε,3‖L1 ≤ ε‖D2G(u(4)
ε )‖L∞

√
Θε(uε + u

(4)
ε )Θε(uε − u(4)

ε )

≤ CK
(
ε

1
2
χ− 1

2
−2κ + εα−

1
2
−κ‖%ε‖α

)
.

Fourth term. We shall show that

‖σε,4‖−1 ≤ CK
(
ε−2κ‖%ε‖α + ε

1
2
χ− 1

2
−2κ
)
. (5.21)

First we use the L∞-bound on u(4)
ε enforced by the stoppping time, to obtain the

pointwise bound

|Rε(uε, uε)−Rε(uε, u(4)
ε )|

≤ CK
∫

R
ε2y3

(
|D̂εyuε|2 + |D̂εyuε||D̂εyu

(4)
ε |+ |D̂εyu

(4)
ε |2

)
× |D̂εy(uε − u(4)

ε )| |µ|(dy)

≤ CK
∫

R
εy2
(
|D̂εyuε|+ |D̂εyu

(4)
ε |
)
|D̂εy(uε − u(4)

ε )| |µ|(dy) .

In view of (5.20) it thus follows that

‖Rε(uε, uε)−Rε(uε, u(4)
ε )‖L1

≤ CKε
∫

R
y2‖
(
|D̂εyuε|+ |D̂εyu

(4)
ε |
)
|D̂εy(uε − u(4)

ε )| ‖L1 |µ|(dy)

≤ CKε
∫

R
y2
(
‖D̂εyuε‖L2 + ‖D̂εyu

(4)
ε ‖L2

)
‖D̂εy(uε − u(4)

ε )‖L2 |µ|(dy)

≤ CKε
√(

Θε(uε) + Θε(u
(4)
ε )
)
Θε(uε − u(4)

ε ) .

Using (5.16), (5.18), and the definition of the stopping time to bound Θε(ψ̃χ), we
find that

Θε(uε) + Θε(u
(4)
ε ) ≤ C

(
Θε(uε) + Θε(%ε) + Θε(ψ̃χ)

)
≤ CK

(
ε−1−κ + ε2α−2 + εχ−1−κ) ≤ ε−1−κ .

Using (5.20), we thus obtain

‖Rε(uε, uε)−Rε(uε, u(4)
ε )‖L1 ≤ CK

(
ε

1
2
χ− 1

2
−2κ + εα−

1
2
−κ‖%ε‖α

)
. (5.22)

Furthermore, taking into account that

‖uε − u(4)
ε ‖L∞ ≤ CK(‖ψ̃χ‖L∞ + ‖%ε‖L∞) ≤ CK(ε

1
2
χ−κ + ‖%ε‖α) ,

we have by (5.16),

‖Rε(uε, u(4)
ε )−Rε(u(4)

ε , u(4)
ε )‖L1 (5.23)

≤ CKε2‖uε − u(4)
ε ‖L∞

∫
R
y3‖|D̂εyu

(4)
ε |3‖L1 |µ|(dy)

≤ CKε‖uε − u(4)
ε ‖L∞

∫
R
y2‖D̂εyu

(4)
ε ‖2L2 |µ|(dy)
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= CKε‖uε − u(4)
ε ‖L∞Θ2

ε(u
(4)
ε )

≤ CK(ε
1
2
χ−3κ + ε−2κ‖%ε‖α) .

The claim follows by adding (5.22) and (5.23) and using the embedding L1 ⊆ H−1.
Fifth term. As in the first step, we have

‖σε,4‖−1 = ‖F (ṽγ + ψ̃γ)− F (ṽγ + ψ̃χγ − %ε)‖−1

≤ CK
(
‖ψ̃χ‖L∞ + ‖%ε‖L∞

)
≤ CK

(
ε

1
2
χ−κ + ‖%ε‖α

)
.

(5.24)

Combining the five estimates, we obtain

‖%ε(t)‖α ≤ C(t− s)
1
2

(1−α) sup
r∈(s,t)

‖σε(r)‖−1

≤ C(t− s)
1
2

(1−α) sup
r∈(s,t)

(
ε−2κ‖%ε(r)‖α + ε

1
2
χ− 1

2
−2κ
)
.

The result now follows as in the proof of Proposition 5.1. �
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1992.

[Lun95] A. LUNARDI. Analytic semigroups and optimal regularity in parabolic problems.
Progress in Nonlinear Differential Equations and their Applications, 16. Birkhäuser
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