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Abstract

Consider reflecting Brownian motion in a bounded domain in Rd that acquires drift in
proportion to the amount of local time spent on the boundary of the domain. We show that the
stationary distribution for the joint law of the position of the reflecting Brownian motion and
the value of the drift vector has a product form. Moreover, the first component is uniformly
distributed on the domain, and the second component has a Gaussian distribution. We also
consider more general reflecting diffusions with inert drift as well as processes where the drift is
given in terms of the gradient of a potential.

1 Introduction

This article is concerned with the higher dimensional version of a one-dimensional model originally
introduced by Knight [Kni01] and studied in more detail in [Whi05, Whi07]. Computer simulations
presented in [BHP07] led to the conjecture that the stationary distribution for this higher dimen-
sional process has a certain interesting structure. We prove this conjecture, and moreover answer
questions about the stationary distribution left open in [BHP07].

We start with a presentation of the model in a simple case, that of [BHP07]. We consider a
bounded smooth domain D ⊂ Rd and reflecting Brownian motion Xt in D with drift Kt. Let
Bt be d-dimensional Brownian motion, n(x) be the unit inward normal vector of D at x ∈ ∂D

and let Lt be the local time of X on ∂D, that is, a nondecreasing one-dimensional process with
continuous paths that increases only when Xt ∈ ∂D. The pair of processes (X,K) has the following
representation: {

Xt = X0 +Bt +
∫ t

0 n(Xs) dLs +
∫ t

0 Ks ds,

Kt = K0 +
∫ t

0 n(Xs)dLs

with (Xt,Kt) ∈ D × Rd for all t ≥ 0. Note that Xt is reflecting Brownian motion in D with
normal reflection at the boundary and with drift Kt, Kt is an Rd-valued process that represents
the accumulated local time on the boundary in the direction normal to the boundary, and the drift
Kt does not change when Xt is in the interior of D. We call the process K “inert drift” because
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it plays a role analogous to the inert particle in Knight’s original model [Kni01] in one dimension.
The main simulation result of [BHP07], which is done for a flat two-dimensional torus with a
closed subset A removed from its center, where A is either a disk, an ellipse or a square, suggests
that a stationary distribution for (X,K) exists and has a product form, i.e., that Xt and Kt are
independent for each time t under the stationary distribution. Moreover, the first component of
the stationary distribution is the uniform probability measure on D. We prove rigorously in this
paper that this indeed holds, and we further show that the second component of the stationary
distribution is Gaussian.

The product form of the stationary distribution was initially a mystery to us, especially since
the components X and K of the vector (X,K) are not Markov processes. There are models known
in mathematical physics where the stationary distribution of a Markov process has a product form
although each component of the Markov process is not a Markov process itself. Examples may
be found in Chapter VIII of [Lig85], in particular, Theorem 2.1 on page 380. As we will see at
the beginning of Section 4, the product form of the stationary distribution in our model comes
naturally from a computation with infinitesimal generators.

When d = 1 and D is a finite interval in R, it is shown in [Whi05, BW04] that the process K,
when time-changed by the local time L, has a Gaussian stationary distribution. The results of the
present paper yield as a special case that the process K under its original time clock also has a
Gaussian stationary distribution. Moreover, we show that if the inward normal vector field n in the
equation for K is replaced by Γn for some constant symmetric positive definite matrix Γ, (X,K)
continues to have a product form for the stationary distribution, but this time the component K
has a Gaussian distribution with covariance matrix Γ.

The main goal of this paper is to address the existence and uniqueness of the stationary distri-
bution of normally reflecting Brownian motion with inert drift and to give an explicit formula for
the stationary distribution. We also consider a larger class of reflecting diffusions, including what
is sometimes known as distorted reflecting Brownian motion—see Theorem 5.2 below. Distorted
reflected Brownian motion is the reflecting diffusion with generator 1

2ρ ∇(ρ∇) for a suitable function
ρ.

We start by showing in Section 2 the weak existence and weak uniqueness of solutions to an
SDE representing a large family of diffusions with reflection and inert drift. More specifically, let
ρ be a C2 function on D that is bounded between two positive constants and A(x) = (aij(x))n×n
be a matrix-valued function on Rd that is symmetric, uniformly positive definite, and each aij is
bounded and C2 on D. The vector u(x) := 1

2A(x)n(x) is called the conormal vector at x ∈ ∂D.
Let σ(x) = (σij(x)) be the positive symmetric square root of A(x). For notational convenience, we
sometimes use ∂i to denote ∂

∂xi
. For ϕ ∈ C2(Rd), let

Lϕ(x) :=
1

2ρ(x)

d∑
i,j=1

∂i
(
ρ(x)aij(x)∂jϕ(x)

)
. (1.1)
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Let b(x) be the vector whose kth component is

bk(x) =
1
2

d∑
i=1

∂iaik(x).

Let B be standard d-dimensional Brownian motion and v a bounded measurable vector field on
∂D. Consider the following diffusion process X taking values in D such that for all t ≥ 0,

dXt = σ(Xt) dBt + b(Xt) dt+ 1
2(A∇ log ρ)(Xt)dt+ u(Xt) dLt +Kt dt,

t 7→ Lt is continuous and non-decreasing with Lt =
∫ t

0 1∂D(Xs) dLs,
dKt = v(Xt) dLt.

(1.2)

In Theorem 2.1, we show that the above stochastic differential equation (SDE) has a unique weak
solution (X,K) for every starting point (x0, k0) ∈ D × Rd. The solution (X,K) of (1.2) is called
a (symmetric) reflecting diffusion on D with inert drift. Let X0 be symmetric reflecting diffusion
on D with infinitesimal generator L in (1.1); that is, X0 is a continuous process taking values in D
such that for every t ≥ 0,{

dX0
t = σ(X0

t ) dBt + b(X0
t ) dt+ 1

2(A∇ log ρ)(Xt)dt+ u(X0
t ) dL0

t ,

t 7→ L0
t is continuous and non-decreasing with L0

t =
∫ t

0 1∂D(X0
s ) dL0

s.
(1.3)

The continuous non-decreasing process L0 is called the boundary local time of X0. When σ is the
identity matrix, X0 is distorted reflecting Brownian motion on D. The main observation of Section
2 is that the reflecting diffusion (X,K) with inert drift can be obtained from the reflecting diffusion(
X0,K0 +

∫ ·
0 n(X0

s ) dL0
s

)
without inert drift by a suitable Girsanov transform, and vice versa. A

further change of measure (see Theorem 2.3) shows that, if c is a bounded Rd-valued function on
D, the following SDE with “generalized inert drift”:

dXt = σ(Xt) dBt + b(Xt) dt+ 1
2(A∇ log ρ)(Xt)dt+ u(Xt) dLt +Kt dt,

t 7→ Lt is continuous and non-decreasing with Lt =
∫ t

0 1∂D(Xs) dLs,
dKt = v(Xt) dLt + c(Xt)dt,

(1.4)

has a unique weak solution (X,K) taking values in D×Rd for every starting point (x0, k0) ∈ D×Rd.
The questions of strong existence and strong uniqueness for solutions to (1.2) are discussed in

Section 3. They are resolved positively under the additional assumption that v = a0u for some
constant a0 ∈ R. This section uses some ideas and results from [LS84], but the main idea of our
argument is different from the one in that paper, and we believe ours is somewhat simpler.

In Section 4 we consider symmetric diffusions with drift given as the gradient of a potential. We
do this because the analysis of the stationary distribution is much easier in the case of a smooth
potential than the “singular” potential representing reflection on the boundary of a domain. More
specifically, let Γ be a symmetric positive definite constant d × d-matrix and V ∈ C1(D) tending
to infinity in a suitable way as x approaches the boundary ∂D. Consider the following diffusion
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process X on D associated with generator L = 1
2e
V∇

(
e−VA∇

)
but with an additional “inert” drift

Kt: {
dXt = σ(Xt) dBt + b(Xt) dt− 1

2(A∇V )(Xt) dt+Kt dt ,

dKt = −1
2Γ∇V (Xt) dt ,

(1.5)

Here A = A(x) = σTσ is a d × d matrix-valued function that is uniformly elliptic and bounded,
with σij ∈ C1(D). Note that equation (1.5) is missing the term u(Xt) dLt which is present in
(1.2). This is because the process defined in (1.5) never hits the boundary of the domain. We show
in Theorem 4.3 that if e−V/2 ∈ W 1,2

0 (D), then the SDE (1.5) has a unique conservative solution
(X,K) which has a stationary probability distribution

π(dx, dy) = c11D(x)e−V (x) e−(Γ−1y,y) dx dy.

In other words, (X,K) has a product form stationary distribution, with c e−V dx in the X com-
ponent, and a Gaussian distribution with covariance matrix Γ in the K component. Observe that
c e−V dx with normalizing constant c > 0 is the stationary distribution for the conservative sym-
metric diffusion X0 in D with generator 1

2e
V∇(e−VA∇). The uniqueness of the stationary measure

for solutions of (1.5) is addressed in Proposition 4.8 under much stronger conditions.
In Section 5, we prove weak convergence of a sequence of solutions of (1.5) to symmetric

reflecting diffusions with inert drift given by (1.2) where ρ ≡ 1 and v = Γ n for some symmetric
positive definite constant matrix Γ. This implies

π(dx, dy) = c21D(x) e−(Γ−1y,y) dx dy

is a stationary distribution for solutions (X,K) of (1.2) with ρ ≡ 1 and v = Γn; see Theorem 5.2.
Observe that c3 1D(x) dx with c3 > 0 being a normalizing constant is the stationary distribution
for the symmetric reflecting diffusion X0 on D with generator 1

2 ∇(A∇) in (1.3). If one prefers to
have a stationary measure of the form π(dx, dy) = c31D(x)ρ(x) e−(Γ−1y,y) dx dy, where c3 > 0 is a
normalizing constant, then one needs to consider the SDE (X,K) with generalized inert drift (1.4)
by taking c(x) there to be Γ∇ log ρ(x); see Theorem 5.2.

Finally, Section 6 completes our program by showing irreducibility in the sense of Harris for
reflecting diffusions with inert drift given by (1.2) under the assumption that ρ ≡ 1, v = Γ n for
some symmetric positive definite constant matrix Γ, A is the identity matrix, u = n, and b = 0.
Uniqueness of the stationary distribution follows from the irreducibility.

The level of generality of our results varies throughout the paper, for technical reasons. We
leave it as an open problem to prove a statement analogous to Theorem 6.2 in the general setting of
Theorem 2.3. The calculation at the beginning of Section 4 indicates that in order for the solution
(X,K) of (1.2) to have a product form stationary distribution, the inert drift vector field v has to
be of the form Γ n for some symmetric positive definite constant matrix Γ. We leave the verification
of this conjecture as another open problem.
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Our model belongs to a family of processes with “reinforcement” surveyed by Pemantle in
[Pem07]; see especially Section 6 of that survey and references therein. Papers [BL02, BR03, BR05]
study a process with a drift defined in terms of a “potential” and the “normalized” occupation
measure. While there is no direct relationship to our results, there are clear similarities between
that model and ours.

We are grateful to Boris Rozovskii and David White for very useful advice. We also thank the
referee for suggestions that significantly improved the substance and presentation of this paper.

2 Weak existence and uniqueness

This section is devoted to weak existence and uniqueness of solutions to an SDE representing a
family of reflecting diffusions with inert drift.

Let D be a bounded C2 domain in Rd, d ≥ 2, and denote by n the inward unit normal vector
field on ∂D. Throughout this paper, all vectors are column vectors. Let ρ be a C2 function on
D that is bounded between two positive constants and A(x) = (aij(x))n×n be a matrix-valued
function on Rd that is symmetric, uniformly positive definite, and each aij is bounded and C2 on
D. The vector u(x) := 1

2A(x)n(x) is called the conormal vector at x ∈ ∂D. Clearly there exists
c1 > 0 such that u(x) · n(x) ≥ c1 for all x ∈ ∂D. Let σ(x) = (σij(x)) be the positive symmetric
square root of A(x). For ϕ ∈ C2(Rd), let

Lϕ(x) :=
1

2ρ(x)

d∑
i,j=1

∂i (ρ(x)aij(x)∂jϕ(x)) .

Let b̂(x) be the vector whose kth component is

b̂k(x) =
1

2ρ(x)

d∑
i=1

∂i(ρ(x)aik(x)).

Thus b̂k is the same as L operating on the function fk(x) = xk. Note that b̂ = b + 1
2A∇ log ρ.

Let B be a standard d-dimensional Brownian motion and v a bounded measurable vector field
on ∂D. Consider the following system of stochastic differential equations, with the extra condition
that Xt ∈ D for all t ≥ 0:

dXt = σ(Xt) dBt + b̂(Xt) dt+ u(Xt) dLt +Kt dt,

t 7→ Lt is continuous and non-decreasing with Lt =
∫ t

0 1∂D(Xs) dLs,
dKt = v(Xt) dLt.

(2.1)

The proof of the next theorem says that reflecting diffusions with inert drift can be obtained
from the corresponding symmetric reflecting diffusions without inert drift by suitable Girsanov
transforms, and vice versa.

5



Theorem 2.1 For every x ∈ D and y ∈ Rd there exists a unique weak solution {(Xt,Kt), t ∈
[0,∞)} to (2.1) with (X0,K0) = (x, y).

Proof. Consider the following SDE,{
dXt = σ(Xt) dBt + b̂(Xt) dt+ u(Xt) dLt,
t 7→ Lt is continuous and non-decreasing with Lt =

∫ t
0 1∂D(Xs) dLs,

(2.2)

with Xt ∈ D for every t ≥ 0. Weak existence and uniqueness of solutions to (2.2) follow from
[Che93] or [DI93]. Corollary 5.2 in [DI93], where the existence and uniqueness of a strong solution
are given. (We have been informed by the authors of [DI93] that there is a gap in the proof of Case
2 in [DI93], but we need only Case 1. Moreover they have informed us that a correction for Case
2 is in press.) The distribution of the solution to (2.2) with X0 = x ∈ D will be denoted by Px.

Note that the remaining part of the proof uses only the C1-smoothness of the domain and
Lipschitz continuity of aij and ρ. Let Kt := y +

∫ s
0 v(Xs) dLs and σ−1(x) be the inverse matrix of

σ(x). Define for t ≥ 0,

Mt = exp
(∫ t

0
σ−1(Xs)Ks dBs −

1
2

∫ t

0
|σ−1(Xs)Ks|2 ds

)
.

It is clear that M is a continuous positive local martingale with respect to the minimal augmented
filtration {Ft, t ≥ 0} of X. Let Tn = inf{t > 0 : |Kt| ≥ 2n}. Since Lt < ∞ for every t < ∞,
Px-a.s., and |v| is uniformly bounded, we see that Kt < ∞ for every t < ∞, Px-a.s. Hence,
T∞ := limn→∞ Tn =∞, Px-a.s. For every n ≥ 1, {MTn∧t,Ft, t ≥ 0} is a martingale.

For x ∈ D, y ∈ Rd and n ≥ 1, define a new probability measure Qx,y by

dQx,y = MTn dPx on FTn for every n ≥ 1.

It is routine to check this defines a probability measure Qx,y on F∞. By the Girsanov theorem (cf.
[RY99]), the process

Wt := Bt −
∫ t

0
σ−1(Xs)Ks ds,

is a Brownian motion up to time Tn for every n ≥ 1, under the measure Qx,y. Thus we have from
(2.2) that under Qx,y, up to time Tn for every n ≥ 1,

dXt = σ(Xt) dWt + b̂(Xt) dt+ u(Xt) dLt +Kt dt.

In other words, {(Xt,Kt), 0 ≤ t < T∞} under the measure Qx,y is a weak solution of (2.1).

We make a digression on the use of the strong Markov property. At this point in the proof, we
cannot claim that (X,K) is a strong Markov process. Note however that if T is a finite stopping
time, then (Xt+T ,Kt+T ) is again a solution of (2.1) with initial values (XT ,KT ). We can therefore
use regular conditional probabilities as a technical substitute for the strong Markov property; this
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technique has been described in great detail in Remark 2.1 of [BBC07], where we used the name
“pseudo-strong Markov property.” Throughout the remainder of this proof we will use the pseudo-
strong Markov property in place of the traditional strong Markov property and refer the reader to
[BBC07] for details.

We will next show that T∞ = ∞, Qx,y-a.s., i.e., the process is conservative. This is the same
as saying |K| does not “explode” in finite time under Qx,y. The intuitive reason why this should
be true is the following. Consider a one-dimensional Brownian motion starting at 1 with a very
large constant negative drift of size c and reflect it at the origin. Then a simple calculation shows
that the local time accumulated at the origin by this process up to time 1 is also of order c. This
suggests that if K is very large, the local time accumulated in a time interval of order 1 by X on
the boundary ∂D will be approximately proportional to K. Since this feeds back into the right
hand side of the definition of K in (2.1), one would expect K to grow at most exponentially fast
in time.

Consider ε = 2−j > 0 where j ≥ 1 is an integer. Our argument applies only to small ε > 0 so
we will now impose some assumptions on ε. Consider x0 ∈ ∂D and let CSx0 be an orthonormal
coordinate system such that x0 = 0 in CSx0 and the positive part of the d-th axis contains n(x0). Let
n0 = n(x0). Recall that D has a C1 boundary and that there exists c1 > 0 such that u(x)·n(x) > c1

for all x ∈ ∂D. Hence there exist ε0 > 0 and c2 > 0, such that for all ε ∈ (0, ε0), every x0 ∈ ∂D
and all points x = (x1, . . . , xd) ∈ ∂D ∩ B(x0, (6/c2 + 5)ε), we have |xd| < ε/2 and u(x) · n0 > c2,
in CSx0 . Since |v(x)| ≤ c3 < ∞ for all x ∈ ∂D, we can make ε0 > 0 smaller, if necessary, so that
(2c2)/(c3ε)− 5ε ≥ ε for all ε ∈ (0, ε0].

Let

S0 = inf{t > 0 : |Kt| ≥ 1/ε},

Sn+1 = inf{t > Sn : | |Kt| − |KSn | | ≥ (6c3/c2)ε}, n ≥ 0.

We will estimate Qx,y(Sn+1 − Sn > ε2 | FSn) for n = 0, . . . , [ε−2c2/(6c3)]. Note that XSn ∈ ∂D
for every n because K does not change when X is in the interior of the domain. Note also that
|KSn | ≤ 2/ε for every n ≤ ε−2c2/(6c3) by construction.

For n ≥ 0, let

Y
(n)
t =

∫ Sn+t

Sn

σ(Xs) dWs +
∫ Sn+t

Sn

b(Xs) ds,

Fn =

{
sup

t∈[0,ε2]

|Y (n)
t | < ε

}
.

It is standard to show that there exist ε0, p0 > 0, not depending on n, such that if ε < ε0, then

Qx,y(Fn | FSn) ≥ p0.
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Let
Rn = (Sn + ε2) ∧ inf{t ≥ Sn : |Kt| ≥ 4/ε}.

Suppose that the event Fn holds. We will analyze the path of the process {(Xt,Kt), Sn ≤ t ≤
Rn}. First, we will argue that Xt ∈ B(XSn , (6/c2 + 5)ε) for Sn ≤ t ≤ Rn. Suppose otherwise. Let
U1 = inf{t > Sn : Xt /∈ B(XSn , (6/c2 + 5)ε)} and U2 = sup{t < U1 : Xt ∈ ∂D}. We have

(6/c2 + 5)ε = |XU1 −XSn | =
∣∣∣∣YU1−Sn +

∫ U1

Sn

Kt dt+
∫ U1

Sn

u(Xt) dLt

∣∣∣∣ .
So on Fn ∩ {U1 ≤ Rn},∣∣∣∣∫ U2

Sn

u(Xt) dLt

∣∣∣∣ =
∣∣∣∣∫ U1

Sn

u(Xt) dLt

∣∣∣∣
≥ (6/c2 + 5)ε−

∣∣∣∣YU1−Sn +
∫ U1

Sn

Kt dt

∣∣∣∣
≥ (6/c2 + 5)ε− ε−

∫ Sn+ε2

Sn

4/ε dt

≥ (6/c2 + 5)ε− ε− 4ε

= (6/c2)ε.

We will use the coordinate system CSXSn to make the following observations. The last formula
implies that the d-th coordinate of

∫ U2

Sn
u(Xt) dLt is not less than 6ε. Hence the d-th coordinate of

XU2 must be greater than or equal to

6ε−
∣∣∣∣YU1−Sn +

∫ U1

Sn

Kt dt

∣∣∣∣ ≥ 6ε− ε−
∫ Sn+ε2

Sn

4/ε dt ≥ 6ε− ε− 4ε = ε.

This is a contradiction because XU2 ∈ ∂D and the d-th coordinate for all x ∈ ∂D∩B(XSn , (6/c2 +
5)ε) is bounded by ε/2. So on Fn, we have Xt ∈ B(XSn , (6/c2 + 5)ε) for t ∈ [Sn, Rn].

We will use a similar argument to show that Rn = Sn + ε2 on Fn. Suppose that Rn < Sn + ε2.
Then Sn ≤ Rn and |KRn | = 4/ε. Let U3 = sup{t < Rn : Xt ∈ ∂D}. The definition of Sn implies
that KSn ≤ 2/ε for n ≤ [ε−2c2/(6c3)]. We have∣∣∣∣∫ Rn

Sn

v(Xt) dLt

∣∣∣∣ = |KRn −KSn | ≥ 4/ε− 2/ε = 2/ε.

Since |v(x)| ≤ c3, we have LRn − LSn ≥ 2/(c3ε), so the d-th coordinate of
∫ Rn
Sn

u(Xt) dLt, which is
the same as

∫ U3

Sn
u(Xt) dLt, is bounded below by (2c2)/(c3ε). But then on Fn, the d-th coordinate

of XU3 must be greater than or equal to

(2c2)/(c3ε)−
∣∣∣∣YRn−Sn +

∫ Rn

Sn

Kt dt

∣∣∣∣ ≥ (2c2)/(c3ε)− ε−
∫ Sn+ε2

Sn

4/ε dt = (2c2)/(c3ε)− 5ε ≥ ε.

8



This is a contradiction because XU3 ∈ ∂D and the d-th coordinate for all x ∈ ∂D∩B(x0, (6/c2+5)ε)
is bounded by ε/2. So on Fn we have Rn = Sn + ε2.

We will now use the same idea to show that on Fn, LSn+ε2 − LSn < (6/c2)ε. Assume that
LSn+ε2 − LSn ≥ (6/c2)ε. Let U4 = sup{t ≤ Sn + ε2 : Xt ∈ ∂D}. The d-th coordinate of∫ U4

Sn
u(Xt) dLt is bounded below by 6ε. But then on Fn, the d-th coordinate of XU3 must be greater

than or equal to

6ε−
∣∣∣∣YRn−Sn +

∫ Rn

Sn

Kt dt

∣∣∣∣ ≥ 6ε− ε−
∫ Sn+ε2

Sn

4/ε dt ≥ ε.

This is a contradiction because XU3 ∈ ∂D and the d-th coordinate for all x ∈ ∂D∩B(x0, (6/c2+5)ε)
is bounded by ε/2. We see that if the event Fn holds, then

| |KSn+ε2 | − |KSn | | ≤
∫ Sn+ε2

Sn

|v(Xt)| dLt ≤ c3(LSn+ε2 − LSn) ≤ c3(6/c2)ε.

Hence, if the event Fn holds, then Sn+1 > Sn + ε2. We see that

Qx,y(Sn+1 > Sn + ε2 | FSn) ≥ p0.

Recall that we took ε = 2−j so that S0 = Tj . The last estimate and the pseudo-strong Markov
property applied at stopping times Sn allow us to apply some estimates known for a Bernoulli
sequence with success probability p0 to the sequence of events {Sn+1 > Sn+ε2}. Specifically, there
is some p1 > 0 so that for all sufficiently small ε = 2−j > 0,

Qx,y(Tj+1 − Tj ≥ (c2/(6c3))p0/2
∣∣FTj )

= Qx,y

[ε−2c2/(6c3)]∑
n=0

(Sn+1 − Sn) ≥ (c2/(6c3))p0/2
∣∣∣FTj


≥ Qx,y

 ε2

c2/(6c3)

[ε−2c2/(6c3)]∑
n=0

1{Sn+1>Sn+ε2} ≥ p0/2
∣∣∣FTj


≥ p1.

Once again, we use an argument based on comparison with a Bernoulli sequence, this time with
success probability p1. We conclude that there are infinitely many n such that Tj+1 − Tj ≥
(c2/(6c3))p0/2, Qx,y-a.s. We conclude that T∞ = ∞, Qx,y-a.s., so our process (Xt,Kt) is defined
for all t ∈ [0,∞).

Next we will prove weak uniqueness. Suppose that Q′x,y is the distribution of any weak solution
to (2.1) and define P′x by

dP′x =
1

MTn

dQ′x,y on FTn for every n ≥ 1.
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Reversing the argument in the first part of the proof, we conclude that X under P′x solves (2.2).
It follows from the strong uniqueness for (2.2) that P′x = Px, and, therefore, Q′x,y = Qx,y on FTn .
Since this holds for all n, we see that Q′x,y = Qx,y on F∞.

Remark 2.2 The assumptions that D is a bounded C2 domain and that the aij ’s and ρ are C2 on
D are only used in the weak existence and uniqueness of the solution X to (2.2). The remaining
proof only requires that D be a bounded C1 domain and that the aij ’s and ρ are Lipschitz in D. In
fact, when D is a bounded C1 domain and the aij ’s and ρ are Lipschitz on D, the weak existence
of solutions to (2.2) follows from [Che93] and so we have the weak existence to the SDE (2.1). We
believe the weak uniqueness for solutions to (2.2) and consequently to (2.1) also holds under this
weaker assumption by an argument analogous to that in [BBC05, Section 4]. However to give the
full details of the proof would take a significant number of pages, so we leave the details to the
reader.

We remarked earlier that if T is a finite stopping time, then (Xt+T ,Kt+T ) is again a solution
to (2.1) with starting point (XT ,KT ). This observation together with the weak uniqueness of the
solution to (2.1) implies that (Xt,Kt) is a strong Markov process in the usual sense; cf. [Bas97,
Section I.5].

For later use, we present a result on diffusions with “generalized inert drift.” Let c be a bounded
Rd-valued function on D. Consider the following system of stochastic differential equations with
the extra condition that Xt ∈ D for all t ≥ 0:

dXt = σ(Xt) dBt + b̂(Xt) dt+ u(Xt) dLt +Kt dt,

t 7→ Lt is continuous and non-decreasing with Lt =
∫ t

0 1∂D(Xs) dLs,
dKt = v(Xt) dLt + c(Xt)dt.

(2.3)

Theorem 2.3 Under the conditions of this section and the assumption that c is a bounded Rd-
valued function on D, for every x ∈ D and y ∈ Rd there exists a unique weak solution {(Xt,Kt), t ∈
[0,∞)} to (2.3) with (X0,K0) = (x, y).

Proof. Note that the weak existence and uniqueness for solution of (2.3) with (X0,K0) = (x, y) is
equivalent to that for the solution of

Xt = x+
∫ t

0
σ(Xs) dBs +

∫ t

0
b̂(Xs) ds+

∫ t

0
u(Xs) dLs (2.4)

+
∫ t

0

(
y +

∫ s

0
v(Xr)dLr

)
ds+

∫ t

0

(∫ s

0
c(Xr)dr

)
ds,
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with Xt ∈ D. Similarly, the weak existence and uniqueness for the solution of (2.1) with (X0,K0) =
(x, y) is equivalent to that for the solution of

Xt = x+
∫ t

0
σ(Xs) dBs +

∫ t

0
b̂(Xs) ds+

∫ t

0
u(Xs) dLs +

∫ t

0

(
y +

∫ s

0
v(Xr)dLr

)
ds, (2.5)

with Xt ∈ D. The solutions to (2.4) and (2.5) are related by a Girsanov transform. Since c is
bounded, the result of this theorem follows from Theorem 2.1.

3 Pathwise uniqueness

We will prove strong existence and strong uniqueness for solutions to (2.1) under assumptions
stronger than those in Section 2, namely, we will assume that the vector field v is a fixed constant
multiple of u. Throughout this section, D is a bounded C2 domain in Rd, each aij and ρ are C1,1

on D and so the vector b̂ in (2.1) is Lipschitz continuous. Our approach to the strong existence
and uniqueness for solutions to (2.1) uses some ideas and results from [LS84], but the main idea
of our argument is different from the one in that paper, and we believe ours is somewhat simpler.
It is probably possible to produce a proof along the lines of [LS84], but a detailed version of that
argument adapted to our setting would be at least as long as the one we give here.

Theorem 3.1 Suppose that v ≡ a0u for some constant a0 ∈ R. For each (x, y) ∈ D × Rd, there
exists a unique strong solution {(Xt,Kt), t ∈ [0,∞)} to (2.1) with (X0,K0) = (x, y).

Proof. When a0 = 0, Kt = K0 for every t ≥ 0. In this case, the result follows from [DI93] (as
mentioned above there is a gap in the proof of Case 2 in [DI93]; we need only Case 1). So without
loss of generality, we assume a0 6= 0.

First we will prove pathwise uniqueness. Suppose that there exist two solutions (Xt,Kt) and
(X ′t,K

′
t), driven by the same Brownian motion B, starting with the same initial values (X0,K0) =

(X ′0,K
′
0) = (x, y), and such that (Xt,Kt) 6= (X ′t,K

′
t) for some t with positive probability.

We let Λ = 2A−1. The matrix-valued function Λ(x) = {λij(x)}1≤i,j≤d, x ∈ Rd, is symmetric
and such that x→ Λ(x) is uniformly elliptic and in C2

b . We have

u(x)TΛ(x) = n(x)T for everyx ∈ ∂D. (3.1)

Moreover, since the vector n(x) points inwards, there exists c1 <∞ such that

u(x)TΛ(x)(x− x′) ≤ c1|x− x′|2 for x ∈ ∂D and x′ ∈ D. (3.2)

Let c2 > 1 be such that

c−1
2 Id×d ≤ Λ(x) ≤ c2Id×d for every x ∈ Rd, (3.3)
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where Id×d is the d× d-dimensional identity matrix. Define λ := c3
2.

Let

Ut =
∫ t

0
σ(Xt) dBt +

∫ t

0
b̂(Xt) dt,

Vt =
∫ t

0
Kt dt,

and define U ′t and V ′t in a similar way relative to X ′.
We fix an arbitrary p1 < 1 and an integer k0 such that in k0 Bernoulli trials with success

probability 1/2, at least k0/4 of them will occur with probability p1 or greater. Let t1 = 1/k0.
Consider some ε, c0 > 0, and let

T1 = inf{t > 0 : |Xt −X ′t| > 0},

Tk = (Tk−1 + t1) ∧ inf{t > Tk−1 : |Xt −X ′t| ∨ |Ut − U ′t | ≥ λk−1ε}

∧ inf{t > Tk−1 : |Lt − LTk−1
| ∨ |L′t − L′Tk−1

| > c0}, k ≥ 2.

We will specify the values of ε and c0 later in the proof.
It is easy to see from (2.1) that it is impossible to have Xt equal to X ′t on some random interval

[0, T ∗], and at the same time Ut 6= U ′t or Kt 6= K ′t for some t ∈ [0, T ∗]. Hence, with probability 1,
Ut = U ′t and Kt = K ′t for t ∈ [0, T1].

The idea of our pathwise uniqueness proof is as follows. Define

S = (T1 + 1/4) ∧ inf{t ≥ T1 : (Lt − LT1) ∨ (L′t − L′T1
) ≥ c0/(4t1)}.

We will show that for any p1 < 1 and integer k0 = k0(p1) as defined above and every ε > 0,

P

(
sup
t∈[0,S]

|Xt −X ′t| ≤ ελk0
)
≥ p1. (3.4)

As ε > 0 is arbitrary, we have

P
(
Xt = X ′t for every t ∈ [0, S]

)
≥ p1 > 0,

which contradicts the definition of T1, in view of the remarks following the definition. This contra-
diction proves the pathwise uniqueness.

Gronwall’s inequality says that if g(t) is nonnegative and locally bounded and g(t) ≤ a +
b
∫ t

0 g(s) ds, then g(t) ≤ aebt. Suppose now that f is a nonnegative nondecreasing function and
g(t) ≤ f(t) + b

∫ t
0 g(s) ds. Applying Gronwall’s inequality for t ≤ t1 with a = f(t1), we have

g(t1) ≤ f(t1)ebt1 . (3.5)

We apply the inequality with g(t) = |Kt −K ′t| and

f(t) = |KT1 −K ′T1
|+ sup

T1≤s≤t

(
|Xs −X ′s|+ |Us − U ′s|

)
.
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Since v ≡ a0u, we have
∫ t

0 u(Xs) dLs = 1
a0

(Kt −K0) and so

Kt −K0 = a0(Xt − x0 − Ut − Vt),

and similarly for K ′. Thus

Kt −K ′t = a0(Xt −X ′t − Ut + U ′t − Vt + V ′t ),

and hence for t ≥ T1,

|Kt −K ′t| ≤ 2|a0|

(
sup

T1≤s≤t
(|Xs −X ′s|+ |Us − U ′s|) +

∫ t

T1

|Ks −K ′s| ds

)
.

By (3.5), for t ≥ T1,

|Kt −K ′t| ≤ e2|a0|(t−T1)

(
2|a0| sup

T1≤s≤t
(|Xs −X ′s|+ |Us − U ′s|)

)
.

Recall that t1 = 1/k0. It follows that Tk0 − T1 ≤ 1 and e2|a0|(t−T1) ≤ e2|a0| for t ≤ Tk0 . The
definition of the Tk’s implies that

sup
0≤s≤Tk

|Xs −X ′s| ≤ λk−1ε and sup
0≤s≤Tk

|Us − U ′s| ≤ λk−1ε. (3.6)

We obtain for t ≤ Tk with k ≤ k0,

|Kt −K ′t| ≤ 4e2|a0||a0|λk−1ε. (3.7)

By Ito’s formula we have

(XTk −X
′
Tk

)TΛ(XTk)(XTk −X
′
Tk

)− (XTk−1
−X ′Tk−1

)TΛ(XTk−1
)(XTk−1

−X ′Tk−1
) (3.8)

=
∫ Tk

Tk−1

d
(
(Xt −X ′t)TΛ(Xt)(Xt −X ′t)

)
= 2

∫ Tk

Tk−1

(Xt −X ′t)TΛ(Xt)(σ(Xt)− σ(X ′t)) dBt (3.9)

+ 2
∫ Tk

Tk−1

(Xt −X ′t)TΛ(Xt)(b̂(Xt)− b̂(X ′t)) dt (3.10)

+ 2
∫ Tk

Tk−1

(Xt −X ′t)TΛ(Xt)(Kt −K ′t) dt (3.11)

+ 2
∫ Tk

Tk−1

u(Xt)TΛ(Xt)(Xt −X ′t) dLt (3.12)

− 2
∫ Tk

Tk−1

u(X ′t)
TΛ(Xt)(Xt −X ′t) dL′t (3.13)
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+
∫ Tk

Tk−1

d∑
i=1

(Xt −X ′t)T
∂

∂xi
Λ(Xt)(Xt −X ′t) dXi

t (3.14)

+
1
2

∫ Tk

Tk−1

d∑
i,j=1

(Xt −X ′t)T
(
∂

∂xi

∂

∂xj
Λ(Xt)

)
(Xt −X ′t)(σ2(Xt))ij dt (3.15)

+ 2
∫ Tk

Tk−1

d∑
i,j,n,m=1

(Xi
t − (X ′)it)

∂

∂xn
λij(Xt)σnm(Xt)(σjm(Xt)− σjm(X ′t)) dt (3.16)

+
∫ Tk

Tk−1

d∑
i,j,m=1

λij(Xt)(σim(Xt)− σim(X ′t))(σjm(Xt)− σjm(X ′t)) dt. (3.17)

We are now going to bound each of these terms individually in order to show that (3.4) holds.
Recall that λ = c3

2 > 1. Taking c3 > 0 so that λ1/3c3 + λ−4/3 < 1, it follows from (3.3) that if

(XTk−X
′
Tk

)TΛ(XTk)(XTk−X
′
Tk

)−(XTk−1
−X ′Tk−1

)TΛ(XTk−1
)(XTk−1

−X ′Tk−1
) ≤ c3λ

2(k−1)ε2 (3.18)

and
|XTk−1

−X ′Tk−1
| ≤ λk−2ε, (3.19)

then
|XTk −X

′
Tk
| < λk−1ε. (3.20)

In view of our assumptions on Λ and σ,

Var
(

2
∫ Tk

Tk−1

(Xt −X ′t)TΛ(Xt)(σ(Xt)− σ(X ′t)) dBt
∣∣∣ FTk−1

)
≤ E

(
c4

∫ Tk

Tk−1

sup
Tk−1≤s≤Tk

|Xs −X ′s|4 dt
∣∣∣ FTk−1

)
≤ c4λ

4(k−1)ε4t1.

We make t1 > 0 smaller (and therefore k0 larger), if necessary, so that by Doob’s and Chebyshev’s
inequalities,

P
(∣∣∣2 ∫ Tk

Tk−1

(Xt −X ′t)TΛ(Xt)(σ(Xt)− σ(X ′t)) dBt
∣∣∣ ≥ (1/100)c3λ

2(k−1)ε2
∣∣∣ FTk−1

)
≤ 1

100
. (3.21)

We make t1 > 0 smaller, if necessary, so that∣∣∣∣∣2
∫ Tk

Tk−1

(Xt −X ′t)TΛ(Xt)(b̂(Xt)− b̂(X ′t)) dt

∣∣∣∣∣ ≤ c5

∫ Tk

Tk−1

|Xt −X ′t|2 dt (3.22)

≤ c5t1λ
2(k−1)ε2 ≤ (1/100)c3λ

2(k−1)ε2.
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We use (3.7) and make t1 > 0 smaller, if necessary, to obtain∣∣∣∣∣2
∫ Tk

Tk−1

(Xt −X ′t)TΛ(Xt)(Kt −K ′t) dt

∣∣∣∣∣ ≤
∣∣∣∣∣c6

∫ Tk

Tk−1

|(Xt −X ′t)TΛ(Xt)|λk−1ε dt

∣∣∣∣∣ (3.23)

≤ c7

∫ Tk

Tk−1

|Xt −X ′t|λk−1ε dt

≤ (1/100)c3λ
2(k−1)ε2.

We now apply (3.2) and make c0 > 0 in the definition of Tk sufficiently small so that

2
∫ Tk

Tk−1

u(Xt)TΛ(Xt)(Xt −X ′t) dLt ≤ 2c1

∫ Tk

Tk−1

|Xt −X ′t|2 dLt (3.24)

≤ (1/100)c3λ
2(k−1)ε2.

We have

− 2
∫ Tk

Tk−1

u(X ′t)
TΛ(Xt)(Xt −X ′t) dL′t

= 2
∫ Tk

Tk−1

u(X ′t)
TΛ(X ′t)(X

′
t −Xt) dL′t − 2

∫ Tk

Tk−1

u(X ′t)
T (Λ(Xt)− Λ(X ′t))(Xt −X ′t) dL′t,

so, by using (3.2) as before and making c0 > 0 even smaller, we obtain the following estimate,

− 2
∫ Tk

Tk−1

u(X ′t)
TΛ(Xt)(Xt −X ′t) dL′t (3.25)

≤2c1

∫ Tk

Tk−1

|Xt −X ′t|2 dL′t + c8

∫ Tk

Tk−1

|Xt −X ′t|2 dL′t

≤(1/100)c3λ
2(k−1)ε2.

We have ∫ Tk

Tk−1

d∑
i=1

(Xt −X ′t)T
∂

∂xi
Λ(Xt)(Xt −X ′t) dXi

t (3.26)

=
∫ Tk

Tk−1

d∑
i=1

(Xt −X ′t)T
∂

∂xi
Λ(Xt)(Xt −X ′t)

d∑
j=1

σij(Xt) dB
j
t

+
∫ Tk

Tk−1

d∑
i=1

(Xt −X ′t)T
∂

∂xi
Λ(Xt)(Xt −X ′t)(̂bi(Xt) +Ki

t) dt

+
∫ Tk

Tk−1

d∑
i=1

(Xt −X ′t)T
∂

∂xi
Λ(Xt)(Xt −X ′t)ui(Xt) dLt.
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The three terms on the right hand side of the above formula can be estimated in the same way as
in (3.21), (3.22) and (3.25). Hence,

P

∣∣∣∣∣∣
∫ Tk

Tk−1

d∑
i=1

(Xt −X ′t)T
∂

∂xi
Λ(Xt)(Xt −X ′t)

d∑
j=1

σij(Xt) dB
j
t

∣∣∣∣∣∣ ≥ (1/100)c3λ
2(k−1)ε2

∣∣∣ FTk−1


≤ 1

100
, (3.27)

∣∣∣∣∣
∫ Tk

Tk−1

d∑
i=1

(Xt −X ′t)T
∂

∂xi
Λ(Xt)(Xt −X ′t)(̂bi(Xt) +Ki

t) dt

∣∣∣∣∣ ≤ (1/100)c3λ
2(k−1)ε2, (3.28)

∣∣∣∣∣
∫ Tk

Tk−1

d∑
i=1

(Xt −X ′t)T
∂

∂xi
Λ(Xt)(Xt −X ′t)ui(Xt) dLt

∣∣∣∣∣ ≤ (1/100)c3λ
2(k−1)ε2. (3.29)

The following estimate is completely analogous to (3.22), and may require that we make t0 > 0
smaller, ∣∣∣∣∣12

∫ Tk

Tk−1

d∑
i,j=1

(Xt −X ′t)T
(
∂

∂xi

∂

∂xj
Λ(Xt)

)
(Xt −X ′t)(σ2(Xt))ij dt (3.30)

+ 2
∫ Tk

Tk−1

d∑
i,j,n,m=1

(Xi
t − (X ′)it)

∂

∂xn
λij(Xt)σnm(Xt)(σjm(Xt)− σjm(X ′t)) dt

+
∫ Tk

Tk−1

d∑
i,j,m=1

λij(Xt)(σim(Xt)− σim(X ′t))(σjm(Xt)− σjm(X ′t)) dt

∣∣∣∣∣
≤ c9

∫ Tk

Tk−1

|Xt −X ′t|2 dt

≤ c9t1λ
2(k−1)ε2 ≤ (1/100)c3λ

2(k−1)ε2.

Combining (3.8)-(3.30), we see that conditioned on FTk−1
, with probability 3/4 or greater the

following event holds:

(XTk −X
′
Tk

)TΛ(XTk)(XTk −X
′
Tk

)− (XTk−1
−X ′Tk−1

)TΛ(XTk−1
)(XTk−1

−X ′Tk−1
) ≤ c3λ

2(k−1)ε2.

In view of (3.18)-(3.20), this implies that if (3.19) and the above display hold, then

|XTk −X
′
Tk
| < λk−1ε. (3.31)

Let
T ′k = (Tk−1 + t1) ∧ inf

{
t > Tk−1 : |Xt −X ′t| ≥ λk−1ε

}
.
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By Doob’s inequality, if t1 > 0 is sufficiently small,

P
(

sup
Tk−1≤s≤T ′k

|Us − U ′s| ≥ (1/2)λk−1ε
∣∣∣ FTk−1

)
≤ 1/4. (3.32)

Let
Fk = {Tk = Tk−1 + t1} ∪ {|LTk − LTk−1

| ∨ |L′Tk − L
′
Tk−1
| > c0}.

By (3.31) and (3.32),
P(Fk | FTk−1

) ≥ 1/2. (3.33)

Recall the definition of k0 relative to p1 ∈ (0, 1). Repeated application of the strong Markov
property at the stopping times Tk and comparison with a Bernoulli sequence prove that at least
k0/4 of the events Fk will occur with probability p1 or greater. This implies that with probability
p1 or greater,

either Tk0 − T1 ≥ 1/4 or LTk0 − LT1 ≥ c0/(4t1) or L′Tk0
− L′T1

≥ c0/(4t1).

From (3.6) and the definitions of T1 and S,

P
(

sup
t∈[0,S]

|Xt −X ′t| ≤ ελk0
)
≥ P(S ≤ Tk0) ≥ p1.

As ε > 0 is arbitrary, we have

P
(
Xt = X ′t for every t ∈ [0, S]

)
≥ p1 > 0,

which contradicts the definition of T1. This completes the proof of pathwise uniqueness.

Strong existence follows from weak existence and pathwise uniqueness using a standard argu-
ment; see [RY99, Section IX.1].

4 Diffusions with gradient drifts

This section is devoted to analysis of a diffusion with inert drift given as the gradient of a poten-
tial. We will use such diffusions to approximate diffusions with reflection, but the analysis of the
stationary measure is easier in the case when the drift is smooth. Let V be a C1 function on D

that goes to +∞ sufficiently fast as x approaches the boundary of D. We will consider the diffusion
process on D associated with generator L = 1

2e
V∇(e−VA∇) but with an additional “inert” drift.

More precisely, let Γ be a non-degenerate constant d× d-matrix. We consider the SDE{
dXt = σ(Xt) dBt + b(Xt) dt− 1

2(A∇V )(Xt) dt+Kt dt ,

dKt = −1
2Γ∇V (Xt) dt ,

(4.1)
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where A = A(x) = (aij) = σTσ is uniformly elliptic and bounded. We assume that σ ∈ C1(D) and
b = (b1, · · · , bd) with bk(x) := 1

2

∑d
i=1 ∂iaik(x). Note that, since σ ∈ C1(D), V ∈ C1(D) and b is

bounded, (4.1) has a unique weak solution (X,K) up to the time inf{t > 0 : Xt /∈ D or Kt =∞}.
To find a candidate for the stationary distribution for (X,K), we will do some computations

with processes of the form f(Xt,Kt), where f ∈ C2(R2d). We will use the following notation,

∇xf(x, y) =
(

∂

∂x1
f(x1, . . . , xd, y1, . . . , yd), . . . ,

∂

∂xd
f(x1, . . . , xd, y1, . . . , yd)

)T
,

∇yf(x, y) =
(

∂

∂y1
f(x1, . . . , xd, y1, . . . , yd), . . . ,

∂

∂yd
f(x1, . . . , xd, y1, . . . , yd)

)T
,

Lxf(x, y) =
1
2
eV (x)

d∑
i,j=1

∂

∂xi

(
e−V (x)aij(x)

∂

∂xj
f(x, y)

)
,

L∗xf(x, y) =
1
2

d∑
i,j=1

∂

∂xi

(
e−V (x)aij(x)

∂

∂xj

(
eV (x)f(x, y)

))
.

For f ∈ C2(R2d), by Ito’s formula, we have

df(Xt,Kt) = ∇xfdXt +∇yf dKt +
1
2

d∑
i,j=1

∂

∂xi

∂

∂xj
f(x1, . . . , xd, y1, . . . , yd)d〈Xi, Xj〉t

= local martingale +
(
Lxf +∇xf ·Kt −

1
2
∇yf · Γ∇xV

)
dt.

So the process (X,K) has the generator

Gf(x, y) := Lxf(x, y) + y · ∇xf(x, y)− 1
2

Γ∇xV (x) · ∇yf(x, y) (4.2)

for x ∈ D and y ∈ Rd.

We will now assume that (X,K) has a stationary measure of a special form. Then we will do
some calculations to find an explicit formula for the stationary measure, and finally we will show
that the calculations can be traced back to complete the proof that the measure we started with is
indeed the stationary distribution.

Suppose that (X,K) has a stationary distribution π of the form π(dx, dy) = ρ1(x)ρ2(y) dx dy.
Let G be defined by (4.2) with C2

c (D×Rd) as its domain D(G) of definition. It follows that G∗π = 0,
in the sense that for every f ∈ D(G),∫

R2d

Gf(x, y)π(dx, dy) = 0.
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Then we have for every f ∈ C2
c (D × Rd), by the integration by parts formula,

0 =
∫

Rd

(∫
D

(ρ1(x)y · ∇xf(x, y) + ρ1(x)Lxf(x, y)) dx
)
ρ2(y) dy

−1
2

∫
D

(∫
Rd
ρ2(y)Γ∇xV (x) · ∇yf(x, y) dy

)
ρ1(x) dx

=
∫

Rd

(∫
D

(−∇xρ1(x) · yf(x, y) + L∗xρ1(x)f(x, y)) dx
)
ρ2(y) dy

+
1
2

∫
D

(∫
Rd

Γ∇xV (x) · ∇yρ2(y)f(x, y) dy
)
ρ1(x) dx .

This implies that

ρ2(y) (∇xρ1(x) · y − L∗xρ1(x))− 1
2
ρ1(x)Γ∇xV (x) · ∇yρ2(y) = 0 for (x, y) ∈ D × Rd. (4.3)

We now make an extra assumption that ρ1(x) = ce−V (x). Then we have

ρ2(y)∇xV (x) · y +
1
2

Γ∇xV (x) · ∇yρ2(y) = 0 for (x, y) ∈ D × Rd.

Since V (x) blows up as x approaches the boundary ∂D, {∇xV (x), x ∈ D} spans the whole of Rd.
(If not, there exists v ∈ Rd such that 〈v,∇V (x)〉 ≤ 0 for every x ∈ Rd. One then gets a contradiction
to the fact that there exists r0 > 0 (possibly r0 = +∞) such that limr→r0 V (x+ vr) =∞ for every
x ∈ D.) So we must have

y +
1
2

ΓT∇y log ρ2(y) = 0 for every y ∈ Rd. (4.4)

This implies that Γ is symmetric. To see this, denote the entries of Γ by (γij). Then for every
y = (y1, · · · , yd)T ∈ Rd and 1 ≤ i ≤ d, we have by (4.4)

yi +
1
2

d∑
j=1

γij
∂

∂yj
log ρ2(y) = 0.

Taking the partial derivative with respect to yk yields

δik +
1
2

d∑
j=1

γij
∂2

∂yj∂yk
log ρ2(y) = 0 for every 1 ≤ i, k ≤ d.

This says that −1
2Γ is the inverse matrix of the Hessian of log ρ2, which is symmetric, and so is Γ.

We obtain from (4.4) that

∇y log ρ2(y) = −2Γ−1y for every y ∈ Rd.

Hence we have
log ρ2(y) = −(Γ−1y, y) + c1,
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or
ρ2(y) = c2 exp

(
− (Γ−1y, y)

)
.

The above calculations suggests that when Γ is a symmetric positive definite matrix, the sta-
tionary distribution for the process (X,K) in (2.1) has the form

c3 1D(x) exp
(
− V (x)− (Γ−1y, y)

)
dx dy,

where c3 > 0 is the normalizing constant. This is made rigorous in the following result. Recall
that a process is said to be conservative if it does not explode in finite time. In the present setting,
since we consider processes taking values on D × Rd, this means that the second component does
not explode and that the first component does not reach the boundary of D.

Theorem 4.1 Suppose that Γ is a symmetric positive definite matrix, each σij is C1 on D so that
A = σTσ is uniformly elliptic and bounded on D, and V is a C1 potential on D. Suppose that

π(dx, dy) := c01D(x) exp
(
− V (x)− (Γ−1y, y)

)
dx dy

is a probability measure on D×Rd such that the diffusion process of (4.1) with initial distribution π
is conservative. Then the process of (4.1) has π as a (possibly not unique) stationary distribution.

Proof. Let G be the operator defined by (4.2) with domain D(G) = C2
c (D × Rd). The above

calculation shows that ∫
D×Rd

Gf(x, y)π(dx, dy) = 0 for every f ∈ D(G). (4.5)

Let E := D × Rd and E∆ = E ∪ {∆} be the one-point compactification of E. Recall G is
defined by (4.2) with D(G) = C2

c (E). Since (4.5) holds, we have by Theorem 9.17 in Chapter 4 of
[EK86] that π is a stationary measure for some solution P to the martingale problem for (G,D(G)).
In [EK86, Theorem 4.9.17], the measure P is a probability measure on the product space ER+ .
However by [EK86, Corollary 4.3.7], any solution of the martingale problem for (G,D(G)) has a
modification with sample paths in the Skorokhod space D(R+, E∆) of right continuous paths on E ∆

having left limits. Thus we can assume that P is a D(R+, E∆)-solution to the martingale problem
(G,D(G)) with stationary distribution π. Let (X,K) denote the coordinate maps on E∆ and set

ζ := inf{t > 0 : (Xt,Kt) = ∆}.

We show next that {(Xt,Kt), t < ζ} under P is a solution to SDE (4.1) up to time ζ.
Let f(x, y) = g(x)h(y) with g ∈ C2

c (D) and h ∈ C2
c (Rd). Then under P,

g(Xt)h(Kt) = g(X0)h(K0) + martingale (4.6)

+
∫ t

0

(
h(Ks)Lxf(Xs) + h(Ks)Ks · ∇xg(Xs)

− 1
2
g(Xs)Γ∇xV (Xs) · ∇yh(Ks)

)
ds.
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Here and below, we use the convention that for any function f on E, f(∆) := 0. Let Dn be
subdomains of D increasing to D, let En = Dn × B(0, n), and let τn = inf{t : (Xt,Kt) /∈ En}.
Suppose g ∈ C2(D). Let gn be a function in C2

c (D) that equals g on Dn and hn a function in
C2
c (Rd) that equals 1 on B(0, n). Applying (4.6) to gn and hn, we have, under P, that

g(Xt) = g(X0) + local martingale +
∫ t

0
(Lxg(Xs) +Ks · ∇xg(Xs)) ds (4.7)

for 0 ≤ t ≤ τn. Letting n → ∞, (4.7) holds for 0 ≤ t < ζ. Let g(x) = xi. There are local
martingales M = (M1, · · · ,Md) such that

dXt = dMt + b(Xt) dt−
1
2

(A∇V )(Xt) dt+Kt dt, t < ζ.

Applying Ito’s formula to Xi
tX

j
t yields 〈M i,M j〉t = 〈Xi, Xj〉t =

∫ t
0 aij(Xs) ds for t < ζ. Define

dBt := σ−1(Xt) dMt. Then {Bt, t < ζ} is a Brownian motion up to time ζ and Mt =
∫ t

0 σ(Xs) dBs
for t < ζ. Hence we have

dXt = σ(Xt) dBt + b(Xt) dt−
1
2

(A∇V )(Xt) dt+Kt dt, t < ζ. (4.8)

Similarly to the derivation of (4.7), from (4.6), we have for every h ∈ C2(Rd) that has bounded
derivatives,

h(Kt) = h(K0) + local martingale− 1
2

∫ t

0
Γ∇xV (Xs) · ∇yh(Ks) ds, t < ζ.

In particular, taking h(y) = yi, 1 ≤ i ≤ d, there are local martingales N = (N1, · · · , Nd) such that

dKt = dNt −
1
2

Γ∇xV (Xs) ds, t < ζ.

Applying Ito’s formula to KiKj yields 〈N i, N j〉t = 〈Ki,Kj〉t = 0 for t < ζ. Hence

dKt = −1
2

Γ∇xV (Xs) ds, t < ζ.

This together with (4.5) implies that {(Xt,Kt), t < ζ} under P is a (continuous) weak solution to
(4.1) with initial distribution π up to time ζ. Since aij , V ∈ C1(D), weak uniqueness holds for
solutions of (4.1) (see [SV72]). So under our conservativeness assumption, (4.1) has a conservative
weak solution with initial distribution π which is unique in distribution. By standard techniques
(cf. the proof of [Bas97, Proposition I.2.1]), any weak solution to (4.1) gives rise to a solution to
the martingale problem for (G,D(G)). This implies that ζ = ∞ because (X,K) with the initial
distribution π is a conservative solution to (4.1), by assumption. We conclude that π is a stationary
distribution for (4.1).

We will present an easily verifiable condition on V for Theorem 4.1 to be applicable. The
following preliminary result for diffusions without inert drift may have interest of its own.
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Recall that W 1,2
0 (D) is the closure of the space C∞c (D) of smooth functions with compact

support in D under the Sobolev norm ‖u‖1,2 :=
(∫

D(|u(x)|+
∑d

i=1 |∂iu(x)|2) dx
)1/2

.

Theorem 4.2 Let D ⊂ Rd be a domain (i.e. a connected open set) and A(x) = (aij(x)) be a
measurable d× d matrix-valued function on D that is uniformly elliptic and bounded. Suppose that
ϕ is a function in W 1,2

0 (D) that is positive on D. Then the minimal diffusion X on D having
infinitesimal generator L = 1

2ϕ2

∑d
i,j=1 ∂i(ϕ

2aij∂j) is conservative.

Proof. The process X is the symmetric diffusion (with respect to the symmetrizing measure
ϕ(x)2 dx) associated with the Dirichlet form (E ,F) in L2(D,ϕ(x)2 dx), where

E(u, v) =
1
2

∫
D

d∑
i,j=1

aij(x)∂iu(x)∂jv(x)ϕ(x)2 dx,

and F is the closure of C∞c (D) with respect to the norm
√
E1; here we define

E1(u, u) := E(u, u) +
∫
D
u(x)2ϕ(x)2 dx.

Let X0 be the symmetric diffusion in D with respect to Lebesgue measure on D associated with
the Dirichlet form (E0,W 1,2

0 (D)) in L2(D, dx), where

E0(u, v) =
1
2

∫
D

d∑
i,j=1

aij(x)∂iu(x)∂jv(x) dx.

Then by [C+04, Theorems 2.6 and 2.8], X can be obtained from X0 through a Girsanov transform
using the martingale dZt = ϕ(X0

t )−1dMϕ
t , where Mϕ is the martingale part of the Fukushima

decomposition for ϕ(X0
t ) − ϕ(X0

0 ). We now conclude from [C+04, Theorem 2.6(ii)] that X is
conservative.

Recall the definition of W 1,2
0 (D) stated before Theorem 4.2.

Theorem 4.3 Suppose that Γ is a constant symmetric positive definite matrix. Let D ⊂ Rd be
a bounded domain, σ = σ(x) be a d × d matrix that is C1 on D so that A = σTσ is uniformly
elliptic and bounded on D. Suppose that V is a C1 function in D such that ϕ = e−V/2 ∈W 1,2

0 (D).
Then the (minimal) solution of (4.1) with initial distribution π is conservative and has π as its
stationary distribution.

Proof. Let (X,Px) denote the symmetric diffusion process with infinitesimal generator

Lx :=
1
2
eV

d∑
i,j=1

∂i
(
e−V aij∂j

)
.
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By Theorem 4.2, (X,Px) is conservative. Let Kt = K0 − 1
2

∫ t
0 (Γ∇V )(Xs) ds. Define for t ≥ 0,

Mt := exp
(
σ−1(Xs)Ks dBs −

1
2

∫ t

0
|σ−1(Xs)Ks|2 ds

)
.

Clearly {Mt, t ≥ 0} is a continuous positive Px-local martingale for every x ∈ D with respect to
the minimal augmented filtration {Ft, t ≥ 0} of X. For n ≥ 1, let Tn := inf{t > 0 : |Kt| ≥ 2n}.
Since X is conservative, we have T∞ := limn→∞ Tn =∞, Px-a.s., for all x ∈ D.

Let P be the distribution of the symmetric stationary diffusion X with initial probability dis-
tribution c1e

−V dx in D. The existence of such a measure follows, for example, from Theorem 4.2.
By enlarging the filtration if necessary, let K0 have the Gaussian distribution c2 exp(−(Γ−1y, y)),
independent of the symmetric diffusion X. Define a new probability measure Q on F∞ by

dQ
dP

= Mt on Ft for every t ≥ 0.

By the Girsanov theorem, the process

Wt := Bt −
∫ t

0
σ−1(Xs)Ks ds

is a Brownian motion under Q up to the time T∞, so under Q,{
dXt = σ(Xt) dWt + b(Xt) dt− 1

2(A∇V )(Xt) dt+Kt dt,

dKt = −1
2Γ∇V (Xt) dt,

for 0 ≤ t < T∞. (4.9)

Note that (X,K) has initial distribution π under Q.
Conversely, given a solution (X,K) of (4.9) under the measure Q, the process X is a conservative

Lx-diffusion under the measure

exp
(
−σ−1(Xs)Ks dWs −

1
2

∫ t

0
|σ−1(Xs)Ks|2 ds

)
dQ.

So to prove that the solution to (4.1) is conservative, it suffices to show that Q(T∞ =∞) = 1.
We are going to show that {Mt, t ≥ 0} is in fact a positive P-martingale. This implies that

Q(T∞ =∞) = 1 because Q(T∞ > t) = E P [Mt] = 1 for every t > 0.
Let E := D × Rd and E∆ = E ∪ {∆} be the one-point compactification of E. Recall G is

defined by (4.2) with D(G) = C2
c (E). Since (4.5) holds, by the same argument as in the proof

of Theorem 4.1, we deduce that π is a stationary measure for some solution Q̂ on D(R+, E∆) to
the martingale problem for (G,D(G)). Let (X̂, K̂) denote the coordinate maps on E∆ and set
ζ := inf{t > 0 : (X̂t, K̂t) = ∆}. Then {(X̂t, K̂t), t < ζ} satisfies the SDE (4.9), and consequently, it
has the same distribution as {(Xt,Kt), t < T∞} under Q.

Note that the matrix σ−1 is bounded so there is a constant c1 > 0 such that

|σ−1(x)v| ≤ c1|v| for every x ∈ D and v ∈ Rd.
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Since under Q̂, K̂t has the same Gaussian distribution for every t ≥ 0, there exist c2 and c3 such
that if r ≤ c2, then

E bQ
[
exp

(
r
∣∣∣σ−1(X̂s)K̂s

∣∣∣2)] ≤ E bQ
[
exp

(
rc2

1

∣∣K̂s

∣∣2)] ≤ c3 for every s ≥ 0.

By Jensen’s inequality applied with the measure 1
t0

1[0,t0](s) ds with t0 ∈ (0, c2/3] and the function
ex we have

E bQ
[
exp

(
3
∫ t0

0

∣∣∣σ−1(X̂s)K̂s

∣∣∣2 ds)] = E bQ
[
exp

(
1
t0

∫ t0

0

(
3t0
∣∣∣σ−1(X̂s)K̂s

∣∣∣2 ) ds)]
≤ E bQ

[
1
t0

∫ t0

0
exp

(
3t0
∣∣∣σ−1(X̂s)K̂s

∣∣∣2) ds

]
≤ 1
t0

∫ t0

0
c3 ds = c3.

Define Nt =
∫ t

0 σ
−1(Xs)Ks dBs. This is a martingale with respect to P and its quadratic

variation 〈N〉t is equal to
∫ t

0 |σ
−1(Xs)Ks|2 ds under both P and Q. Note that exp(−Nt − 1

2〈N〉t) is
a positive local martingale with respect to P and hence a P-supermartingale. Recall that T∞ is the
lifetime for (X,K), i.e., (Xt,K) = ∆ for t ≥ T∞, and that by convention, every function f on E is
extended to a function on E∆ by setting f(∆) = 0. In particular, we have Nt = Nt∧T∞ . We have

E Q

[
e−2Nt

]
= E P

[
e−Nt−

1
2
〈N〉t

]
≤ 1.

Using Cauchy-Schwartz,

E P

[
exp

(∫ t

0

∣∣σ−1(Xs)Ks

∣∣2 ds)] = E P

[
e〈N〉t

]
= E Q

[
e〈N〉te−Nt−

3
2
〈N〉t

]
≤
(
E Q

[
e−2Nt

] )1/2(
E Q

[
e3〈N〉t

] )1/2

≤
(

E Q

[
exp

(
3
∫ t

0

∣∣σ−1(Xs)Ks

∣∣2 ds)])1/2

≤
(

E bQ
[
exp

(
3
∫ t

0

∣∣∣σ−1(X̂s)K̂s

∣∣∣2 ds)])1/2

.

As we observed in the previous paragraph, the last term is bounded if t ≤ c2. It follows from
Novikov’s criterion (see [RY99, Proposition VIII.1.15]) that {Mt, t ∈ [0, c2]} is a uniformly integrable
P-martingale. It follows that Q(T∞ > c2) = 1. Using the Markov property, we have Q(T∞ =∞) =
1. Consequently, π is a stationary distribution for (X,K) of (4.1). This proves the theorem.

The next corollary follows immediately from Theorem 4.3 and the fact that the solution of (4.1)
depends in a continuous way in its initial starting point (x0, k0).
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Corollary 4.4 Under the conditions of Theorem 4.3, for every (x0, k0) ∈ D × Rd, the minimal
solution of (4.1) with initial value (x0, k0) is conservative.

The following remark gives some sufficient conditions for ϕ ∈W 1,2
0 (D) and thus for the condition

of Theorem 4.1 to hold with e−V = ϕ2.

Remark 4.5 (i) Let W 1,2(D) := {f ∈ L2(D, dx) : ∇f ∈ L2(D, dx)}. It is known (see, for
example, [FOT94]) that a function u ∈ W 1,2(D) is in W 1,2

0 (D) if and only if its quasi-
continuous version vanishes quasi-everywhere on ∂D. So in particular, if u ∈ W 1,2(D) and
if

lim
x∈D
x→z

u(x) = 0 for every z ∈ ∂D,

then u ∈W 1,2
0 (D).

(ii) For any positive bounded function u ∈ W 1,2
0 (D) ∩ C1(D), ϕ = e−1/u ∈ W 1,2

0 (D) ∩ C1(D)
and so Theorem 4.1 is applicable for V = 2/u in view of Theorem 4.3. This follows because
f := exp(−1/(2x)) is bounded and Lipschitz continuous on [0, k] for every k ≥ 1. So by the
normal contraction property (cf. [FOT94]), V = f(u) ∈ W 1,2

0 (D). In particular, this is the
case if u is the first positive eigenfunction for the Dirichlet Laplacian on D (if such a ground
state exists).

(iii) The assumption that e−V/2 ∈ C1(D) ∩W 1,2
0 (D) is close to being optimal for ensuring that

the solution to (4.1) never hits the boundary of the domain D. Consider the case n = 1,
D = R+, σ = 1, V : R+ → R+, and remove the inert drift so that dX = −1

2∇V (X) dt+ dB.
Define a function Ψ: R+ → R by

Ψ(x) =
∫ x

1
exp
(
V (y)

)
dy .

Then one can check that Ψ(Xt) is a local martingale with quadratic variation greater or equal
to 1. In particular, it has a positive probability of taking arbitrarily large values during any
finite time interval. If V now diverges at 0 sufficiently slowly so that exp(V ) is still integrable,
this easily implies that this diffusion has a positive probability of reaching 0 in any finite time.

Let us now consider the case where exp
(
V (x)

)
= C/xα near x = 0. In this case, d

dxe
−V/2 is

L2-locally integrable near 0 if and only if α > 1, which is almost the range of parameters for
which exp(V ) is no longer integrable at 0, namely, α ≥ 1.

The remainder of this section is devoted to the analysis of the case when both σ (and hence A)
and Γ are the identity matrix. We consider the SDE{

dXt = −1
2∇V (Xt) dt+Kt dt+ dBt ,

dKt = −1
2∇V (Xt) dt .

(4.10)
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It is possible to show under very weak additional assumptions that π is the only invariant
measure for (4.10). This is not obvious for example in the case where V (x) = f(d(x, ∂D)) for
some function f : R+ → R+ which has a singularity at 0 and is such that f(r) = 0 for r larger
than some (small) constant ε. On the set {x : d(x, ∂D) > ε} × Rd, the diffusion (4.10) has then a
deterministic component dK = 0. In particular, this shows that (4.10) is not hypoelliptic and that
its transition probabilities are not absolutely continuous with respect to Lebesgue measure.

For any multi-index α = {α1, . . . , α`}, we define the vector field ∇αV by(
∇αV (x)

)
k

=
∂`+1V (x)

∂xk∂xα1 . . . ∂xα`
.

Denoting by |α| the size of the multi-index, we furthermore assume that

Assumption 4.6 There exists x∗ ∈ D such that the collection {∇αV (x∗)}|α|>0 spans all of Rd.

Remark 4.7 In the case where D is smooth and V is of the form V (x) = f(d(x, ∂D)) for some
smooth function f diverging at 0, Assumption 4.6 is satisfied as soon as there exists a point on the
boundary such that its curvature has full rank.

We then have

Proposition 4.8 If e−V/2 ∈ C∞(D) ∩ W 1,2
0 (D) and Assumption 4.6 holds, then π(dx, dy) :=

c01D(x) exp(−V (x)− |y|2) dx dy is the unique invariant measure for (4.10).

Proof. Let us first introduce the following concept. Given a Markov operator P over a Polish
space X , we say that P is strong Feller at x if Pφ is continuous at x for every bounded measurable
function φ : X → R. The proof of Proposition 4.8 is then based on the following fact, a version of
which can be found for example in [HM06, Thm 3.16], which is a consequence of well-known results
from [DPZ96, Chapter 4] and [MT93, Section 6.1.2]: If {Pt}t≥0 is a Markov semigroup over X such
that

(i) There exists t > 0 and x ∈ X such that Pt is strong Feller at x,

(ii) One has x ∈ supp π for every invariant probability measure π for the semigroup {Pt},

then the semigroup {Pt} can have at most one invariant probability measure.
Denote now by Pt the Markov semigroup generated by solutions to (4.10). It is easy to check

that Assumption 4.6 means precisely that the operator ∂t − G, where G is the generator of (4.10),
satisfies Hörmander’s condition [Hor85, Nua95] in some neighborhood of (x∗,K, t) for every K ∈ Rd

and every t > 0. Since for any φ ∈ Bb(Rd), the map Φ(t, y,K) =
(
Ptφ

)
(y,K) is a solution (in the

sense of distributions) of the equation
(
∂t−G

)
Φ = 0, this implies that Ptφ is C∞ in a neighborhood

of (x∗, 0) for every t > 0. In particular, Pt is strong Feller at (x∗, 0) for every t > 0.
It now remains to show that the point (x∗, 0) belongs to the support of every invariant measure

of (4.10). This will be checked by showing first that (ii) follows from the following two properties:
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(iii) for all y ∈ X , there exists s(y) ≥ 0 such that x∗ ∈ suppPs(y)(y, · ).

(iv) for every neighborhood U of x∗ there exists a neighborhood U ′ ⊂ U and a time TU > 0 such
that infy∈U ′ Pt(y, U) > 0 for every t < TU .

The argument as to why (iii) and (iv) imply (ii) is the following:
Fix an arbitrary neighborhood U of x∗ and an arbitrary invariant measure π. By the definition

of an invariant measure, one then has

π(U) =
∫ ∞

0

∫
X
e−tPt(y, U)π(dy) dt ≥

∫
X

∫ TU

0
e−(s(y)+t)Ps(y)+t(y, U) dt π(dy)

=
∫
X

∫ TU

0

∫
U ′
e−(s(y)+t)Pt(y′, U)Ps(y)(y, dy

′) dt π(dy) > 0 .

In the last inequality, we used the facts that Ps(y)(y, U ′) > 0 by (iii) and Pt(y′, U) > 0 by (iv).
Since U was arbitrary, this inequality is precisely (ii).

Since (iv) is satisfied for every SDE with locally Lipschitz coefficients, it remains to check that
(iii) is also satisfied. For this, it is enough to check that, for every (x,K) ∈ R2d, there exists T > 0
such that PT (x,K;A) > 0 for every neighborhood A of the point (x∗, 0). In order to show this,
we are going to apply the Stroock-Varadhan support theorem [SV72], so we consider the control
system

ẋ = −1
2
∇V (x) +K + u(t) , K̇ = −1

2
∇V (x) , (4.11)

where u : [0, T ] → Rd is a smooth control. The claim is proved if we can show that for every
(x0,K0), there exists T > 0 such that, for every ε > 0 there exists a control such that the solution
to (4.11) at time T is located in an ε-neighborhood of the point (x∗, 0). Our proof is based on the
fact that, since we assumed that V (x) grows to +∞ as x approaches ∂D, there exists a collection
of ` points x1, . . . , x` (` > n) such that the positive cone generated by ∇V (x1), . . . ,∇V (x`) is all
of Rd. (This fact has already been noted in the paragraph following (4.3).) Fix now an initial
condition (x0,K0). From the previous argument, there exist positive constants α1, . . . , α` such that∑`

i=1 αi∇V (xi) = −K0. Fix now T =
∑`

i=1 αi and consider a family Xε : [0, T ] → Rd of smooth
trajectories such that:

(i) there are time intervals Ii of lengths greater than or equal to αi − ε such that Xε(t) = xi for
t ∈ Ii,

(ii) Xε(0) = x0 and Xε(T ) = x∗,

(iii) one has
∫

[0,T ]\
S
Ii
|∇V (Xε(t))| dt ≤ ε.

Such a family of trajectories can easily be constructed (take a single trajectory going through all
the xi and run through it at the appropriate speed). It now suffices to take as control

u(t) = Ẋε(t) +
1
2
∇V (Xε(t)) +

1
2

∫ t

0
∇V (Xε(s)) ,
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and to note that the solution to (4.11) is given by
(
Xε(t),K0 −

∫ t
0 ∇V (Xε(s))

)
. This solution has

the desired properties by construction.

Remark 4.9 The paper [BRO07] also shows uniqueness of the invariant measure for a mechanical
system for which hypoellipticity fails to hold on an open set. However, the techniques used there
seem to be less straightforward than the argument used here and cannot easily be ported to our
setting.

Remark 4.10 Through all of this section, the assumption that exp(−V/2) ∈W 1,2
0 (D) could have

been replaced by the assumptions that V ∈ C∞, limx→∂D V (x) = +∞,
∫
D exp(−V (x)) dx < ∞,

and there exists a constant C ∈ R such that the relation

∆V (x) ≤ |∇V (x)|2 + C
(
1 + V (x)

)
(4.12)

holds for every x ∈ D. This is because (4.12) ensures that V (x) + K2

2 is a Lyapunov function for
the diffusion (4.10) and so guarantees the non-explosion of solutions.

5 Weak convergence

In this section, we will prove that reflecting diffusions with inert drift can be approximated by
diffusions with smooth inert drifts.

Let D be a bounded Lipschitz domain in Rd and use δD(x) to denote the Euclidean distance
between x and Dc. A continuous function x 7→ δ(x) is called a regularized distance function to Dc

if there are constants c2 > c1 > 0 such that

(i) c1δD(x) ≤ δ(x) ≤ c2δD(x) for every x ∈ Rd;

(ii) δ ∈ C∞(D) and for any multi-index α = (α1, · · · , αd) with |α| :=
∑d

k=1 αk, there is a constant
cα such that ∣∣∣∣∣ ∂|α|δ(x)

(∂x1)α1 · · · (∂xd)αd

∣∣∣∣∣ ≤ cαδD(x)1−|α| for every x ∈ D.

The existence of such a regularized distance function δ is given by [WZ90, Lemma 2.1]. For n ≥ 1,
define

Vn(x) :=

{
exp

(
1

nδ(x)

)
for x ∈ D,

+∞ for x ∈ Dc.
(5.1)

Observe that Vn ∈ C∞(D) and for every multi-index α, the α-derivative of e−Vn at x ∈ D tends to
zero as x→ ∂D. So e−Vn ∈ C∞(Rd). Observe also that as n→∞, e−Vn(x) increases to e−1 1D(x).

Suppose that A = σTσ is a uniformly elliptic and bounded matrix having C2 entries aij on D,
and ρ is a C2 function on D that is bounded between two positive constants.
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We will consider the smooth potential approximations to the symmetric reflecting diffusion
process on D associated with generator L = 1

2ρ∇(ρA∇) but with an additional generalized inert
drift. More precisely, let Γ be a positive definite constant symmetric d × d-matrix. As before, we
use n(x) to denote the unit inward normal vector at x ∈ ∂D and define u(x) := A(x)n(x). We
consider the following diffusion process X with “generalized inert drift” K:{

dXt = σ(Xt) dBt + b(Xt) dt+ 1
2(A∇ log ρ)(Xt)dt+ u(Xt) dLt +Kt dt ,

dKt = Γ n(Xt) dLt + Γ∇ log ρ(Xt)dt,
(5.2)

where Xt ∈ D for every t ≥ 0, and L is continuous and non-decreasing with Lt =
∫ 1

0 1∂D(Xs) dLs.
Here B is a d-dimensional Brownian motion and the drift b is given by b = (b1, · · · , bd) with
bk(x) := 1

2

∑d
i=1 ∂iaik(x). When ρ ≡ 1, (5.2) becomes{

dXt = σ(Xt) dBt + b(Xt) dt+ u(Xt) dLt +Kt dt ,

dKt = Γ n(Xt) dLt,
(5.3)

which is a special case of (2.1).
Let X(n) be the diffusion given by

dX
(n)
t = σ(X(n)

t ) dB(n)
t + b(X(n)

t ) dt+
1
2

(A∇ log ρ)(X(n)
t )dt− 1

2
(A∇Vn)(X(n)

t ) dt,

with initial probability distribution πn(dx) := cn exp(−Vn(x))ρ(x)1D(x) dx, where B(n) is a d-
dimensional Brownian motion, and cn > 0 is a normalizing constant so that πn(Rd) = 1. Hence
X(n) is the minimal diffusion in D with infinitesimal generator

L(n) =
1

2ρ(x)e−Vn(x)

d∑
i,j=1

∂i

(
ρ(x)e−Vn(x)aij(x)∂j

)
,

which is symmetric with respect to the measure πn. Observe that here Vn − log ρ plays the role of
the potential V in Section 3. Clearly e(log ρ−Vn)/2 ∈ C(D) ∩W 1,2

0 (D) and so by Theorem 4.2, X(n)

is conservative and never reaches ∂D. In addition, X(n) is a symmetric diffusion with respect to
the measure πn in D and its Dirichlet form (E(n),F (n)) in L2(D,πn(dx)) is given by (see [WZ90,
Lemma 3.5])

E(n)(f, f) :=
1
2

∫
D

d∑
i,j=1

aij(x)∂if(x)∂jf(x)πn(dx) ,

F (n) :=
{
f ∈ L2(D,πn) : E(n)(f, f) <∞

}
.

Without loss of generality, we assume that X(n) is defined on the canonical path space Ω :=
C([0,∞),Rd) with X

(n)
t (ω) = ω(t). On Ω, for every t > 0, there is a time-reversal operator rt,

defined for ω ∈ Ω by

rt(ω)(s) :=

{
ω(t− s), if 0 ≤ s ≤ t,
ω(0), if s ≥ t.

(5.4)
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Let Pn denote the law of X(n) with initial distribution πn and let {F (n)
t , t ≥ 0} denote the minimal

augmented filtration generated by X(n). Then it follows from the reversibility of X(n) that for
every t > 0, the measure Pn on F (n)

t is invariant under the time-reversal operator rt (cf. [FOT94,
Lemma 5.7.1]). We know that

X
(n)
t −X(n)

0 = M
(n)
t +

∫ t

0

(
b + 1

2A∇ log ρ− 1
2A∇Vn

)
(X(n)

s ) ds, t ≥ 0, (5.5)

where M
(n)
t :=

∫ t
0 σ(X(n)

s ) dB(n)
s is a square-integrable martingale. On the other hand, by the

Lyons-Zheng’s forward and backward martingale decomposition (see [FOT94, Theorem 5.7.1]), we
have for every T > 0,

X
(n)
t −X(n)

0 =
1
2
M

(n)
t − 1

2
(M (n)

T −M (n)
T−t) ◦ rT for t ∈ [0, T ]. (5.6)

Since σ is bounded, for every T > 0, the law of {M (n)
t , t ≥ 0} under Pn is tight in the space

C([0, T ],Rd) and so is 1
2(M (n)

T − M
(n)
T−t) ◦ rT . It follows that the laws of (X(n),M (n), (M (n)

T −
M

(n)
T−·) ◦ rT ) under Pn are tight in the space C([0, T ],R3d) for every T > 0. On the other hand, by

(5.5)-(5.6),

H(n)(t) := −1
2

∫ t

0
(A∇Vn)(X(n)

s ) ds

= −1
2
B

(n)
t − 1

2
(B(n)

T −B(n)
T−t) ◦ rT −

∫ t

0
b(X(n)

s ) ds− 1
2

∫ t

0
(A∇ log ρ)(X(n)

s ) ds.

Thus the laws of (X(n),M (n),
∫ ·

0 b(X(n)
s ) ds,

∫ ·
0(A∇ log ρ)(X(n)

s )ds, H(n), B(n)) under Pn are tight
with respect to the space C([0, T ],R6d) for every T > 0. By almost the same argument as that for
[PW94, Theorems 4.1 and 4.4], (X(n),Pn) converges weakly in C([0, T ],Rd) to a stationary reflecting
diffusion X in D with normalized initial distribution cρ(x) dx on D. Passing to a subsequence, if
necessary, we conclude that((

X(n),M (n),
∫ ·

0 b(X(n)
s ) ds,

∫ ·
0(A∇ log ρ)(X(n)

s )ds, H(n), B(n)
)
,Pn
)

converges weakly

in C([0, T ],R4d) to a process
((
X,M,

∫ ·
0 b(Xs) ds,

∫ ·
0(A∇ log ρ)(Xs)ds, H, B

)
,P
)
.

Now we apply the Skorokhod representation (see Theorem 3.1.8 in [EK86]) to construct the pro-
cesses

(
X(n),M (n),

∫ ·
0 b(X(n)

s ) ds,
∫ ·

0(A∇ log ρ)(X(n)
s )ds, H(n), B(n)

)
and(

X,M,
∫ ·

0 b(Xs) ds,
∫ ·

0(A∇ log ρ)(X)ds, H, B
)

on the same probability space (Ω,F ,P) in such a

way that
(
X(n),M (n),

∫ ·
0 b(X(n)

s ) ds,
∫ ·

0(A∇ log ρ)(X(n)
s )ds, H(n), B(n)

)
converges to(

X,M,
∫ ·

0 b(Xs) ds,
∫ ·

0(A∇ log ρ)(Xs)ds, H, B
)

a.s., on the time interval [0, 1] in the supremum
norm. Therefore, in view of (5.5),

Xt = X0 +Mt +
∫ t

0
b(Xs) ds+

1
2

∫ t

0
(A∇ log ρ)(Xs)ds+Ht for every t ≥ 0.
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By the proof of [PW94, Theorem 6.1 and Remark 6.2], H is a continuous process of locally finite
variation. On the other hand, since X is reflecting diffusion in a Lipschitz domain, by [Che93] it
admits a Skorokhod decomposition. That is,

Xt = X0 +
∫ t

0
σ(Xs) dBt +

∫ t

0
b(Xs) ds+

1
2

∫ t

0
(A∇ log ρ)(Xs)ds+

∫ t

0
A(Xs)n(Xs) dLs, t ≥ 0,

where B is a Brownian motion with respect to the minimal augmented filtration generated by Xt,
n is the unit inward normal vector field on ∂D, which is well defined a.e. with respect to the surface
measure µ on ∂D, and L is a positive continuous additive functional of X with Revuz measure
1
2ρ(x)µ(dx). By the uniqueness of Doob-Meyer decomposition, we have

Ht =
∫ t

0
A(Xs)n(Xs) dLs, for t ≥ 0.

Recall that Vn −∇ log ρ plays the role of the potential V in Section 3. Define for t ≥ 0,

K
(n)
t := K

(n)
0 − 1

2
Γ
∫ t

0
∇(Vn− log ρ)(X(n)

s ) ds and Kt := K0 +Γ
∫ t

0
n(Xs) dLs+

∫ t

0
∇ log ρ(Xs)ds.

Set

Zt = exp
(∫ t

0
σ−1(Xs)Ks dBs −

1
2

∫ t

0
|σ−1(Xs)Ks|2 ds

)
, t ≥ 0,

and

Z
(n)
t = exp

(∫ t

0
σ−1(X(n)

s )K(n)
s dB(n)

s − 1
2

∫ t

0
|σ−1(X(n)

s )K(n)
s |2 ds

)
, t ≥ 0.

Let dQ = Z1dP and dQn = Z
(n)
1 dP. By the Girsanov theorem, under Qn, (X(n),K(n)) satisfies the

following equation{
dX

(n)
t = σ(X(n)

t ) dW (n)
t + b(X(n)

t )− 1
2A∇(Vn − log ρ)(X(n)

t ) dt+K
(n)
t dt,

dK
(n)
t = −1

2Γ∇(Vn − log ρ)(X(n)
t ) dt,

where W (n) is a d-dimensional Brownian motion. On the other hand, by the proofs of Theorems
2.1 and 2.3, (X,K) under Q is a diffusion with generalized inert drift, and satisfies{

dXt = σ(Xt) dWt + b(Xt) dt+ 1
2A∇ log ρ(Xt)dt+ (An)(Xt) dLt +Kt dt,

dKt = Γ n(Xt) dLt + Γ∇ log ρ(X)t)dt,

where W is a d-dimensional Brownian motion.
In the following, the initial distribution of (X(n)

0 ,K
(n)
0 ) and (X0,K0) under P are taken to be

cn1D(x)ρ(x)e−Vn(x)−(Γ−1y,y) dx dy (5.7)

and c1D(x)ρ(x)e−(Γ−1y,y) dx dy, respectively, where cn > 0 and c > 0 are normalizing constants
chosen to make sure that the corresponding measures are probability measures. We may assume,
without loss of generality, that (X(n)

0 ,K
(n)
0 ) converges to (X0,K0) almost surely. Since e(log ρ−Vn)/2 ∈

C(D)∩W 1,2
0 (D), we know from Theorem 4.3 that cn1D(x)ρ(x)e−Vn(x)−(Γ−1y,y) dx dy is a stationary

measure for (X(n),K(n)) under Qn.
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Theorem 5.1 For every T > 0, the law of (X(n),K(n)) under Qn converges weakly in the space
C([0, T ],R2d) to that of the law of (X,K) in (5.2) under Q.

Proof. Without loss of generality, we take T = 1.
Observe that A(X(n)) converges to A(X) uniformly on [0, 1] and

K
(n)
t = K

(n)
0 + Γ

∫ t

0
A−1(X(n)

s )dH(n)
s + Γ

∫ t

0
∇ log ρ(X(n)

s )ds.

Let |H(n)|t and |K(n)|t denote the total variation process of H(n) and K(n) over the interval [0, t],
respectively. Then there is a constant c > 0 independent of n ≥ 1 such that

|K(n)|t ≤ |K(n)
0 |+ |H

(n)|t +
∫ t

0
|Γ∇ log ρ(X(n)

s )|ds for every t ≥ 0.

On the other hand, we know from the proof of Theorem 6.1 in [PW94, p.58-59] that

sup
n≥1

E Pn

[
|H(n)|t

]
<∞ for every t ≥ 0.

Hence by Theorem 2.2 of [KP91], K(n) converges to K in probability with respect to the uniform
topology on C[0, 1]. This yields, by [KP91, Theorem 2.2] again, that

∫ 1
0 σ
−1(X(n)

s )K(n)
s dB

(n)
s →∫ 1

0 σ
−1(Xs)Ks dBs as n → ∞, in probability. By passing to a subsequence, we may assume that

the convergence is P-almost sure. We conclude that limn→∞ Z
(n)
1 = Z1, P-a.s.

Let Φ be a continuous function on (C[0, 1])2 with 0 ≤ Φ ≤ 1. Since Φ(X(n),K(n))→ Φ(X,K),
P-a.s., and Z

(n)
1 → Z1, P-a.s., by Fatou’s lemma,

E P[Φ(X,K)Z1] ≤ lim inf
n→∞

E P[Φ(X(n),K(n))Z(n)
1 ] ≤ lim sup

n→∞
E P[Φ(X(n),K(n))Z(n)

1 ] (5.8)

and
E P[(1− Φ)(X,K)Z1] ≤ lim inf

n→∞
E P[(1− Φ)(X(n),K(n))Z(n)

1 ]. (5.9)

Summing (5.8) and (5.9) we obtain E P[Z1] ≤ lim supn→∞ E P[Z(n)
1 ]. Note that by the proof of

Theorem 4.3, Z(n) is a continuous non-negative P-martingale, while by the proof of Theorem 2.1,
M is a continuous P-martingale. Hence, E P[Z1] = 1 = E P[Z(n)

1 ] and, therefore the inequalities in
(5.8) and (5.9) are in fact equalities. It follows that

lim
n→∞

Qn[Φ(X(n),K(n))] = lim
n→∞

E P[Φ(X(n),K(n))Z(n)
1 ] = E P[Φ(X,K)Z1] = Q[Φ(X,K)].

This proves the weak convergence of (X(n),K(n)) under Qn to (X,K) under Q.

Theorem 5.2 Consider the SDE (5.2) on a bounded Lipschitz domain D ⊂ Rd. A stationary
distribution for the solution (X,K) to (5.2) is

π(dx, dy) = c11D(x)ρ(x)e−(Γ−1y,y) dx dy,

where c1 is the normalizing constant so that π(D × Rd) = 1.
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Proof. Recall the notation from previous proofs in this section. We start (X(n),K(n)) with the
stationary distribution πn of Theorem 4.3, namely,

Qn((X(n)
0 ,K

(n)
0 ) ∈ A) = πn(A) = cn

∫
A
e−Vn(x)ρ(x)e−(Γ−1y,y) dx dy, A ⊂ D × Rd,

where cn is a normalizing constant. Note that here we have e−Vn(x)ρ(x) in place of e−V (x) in
Theorem 4.1. Clearly πn converge weakly on D × Rd to the probability π. Also, the Qn laws of
(X(n), B(n),K(n)) converge weakly to the Q law of (X,B,K). If f is any continuous and bounded
function on R2d, then for t0 ≤ 1,

E Q [f(Xt0 ,Kt0)] = lim
n→∞

E Qn

[
f(X(n)

t0
,K

(n)
t0

)
]

= lim
n→∞

∫
D×Rd

f(x, y)πn(dx, dy)

=
∫
D×Rd

f(x, y)π(dx, dy).

This shows that π is a stationary distribution for the solution to (5.2).

Taking ρ ≡ 1, Theorem 5.2 shows that π(dx, dy) = c11D(x)e−(Γ−1y,y) dx dy, where c1 is the
normalizing constant so that π(D × Rd) = 1, is a stationary distribution for the solution to (5.3).

6 Irreducibility

In this section, D is a bounded C2 domain in Rd. We will prove uniqueness of the stationary
distribution for (X,K) under assumptions stronger than those in previous sections. Let Qx,y denote
the distribution of (X,K) with inert drift starting from (x, y). We say that (X,K) is irreducible in
the sense of Harris if there exists a positive measure µ on D×Rd and t0 > 0 such that if µ(A) > 0,
then for all (x, y) ∈ D × Rd, Qx,y((Xt0 ,Kt0) ∈ A) > 0.

Let Γ be a positive definite constant symmetric d× d-matrix.

Theorem 6.1 Assume that σ is the identity matrix (consequently u ≡ n) and b = 0. Then the
solution (X,K) to (5.3) is irreducible in the sense of Harris.

Proof. Let X denote a solution to (2.2), i.e., the usual normally reflecting Brownian motion in
D, let L be the local time of X on ∂D, and Kt = y0 +

∫ t
0 n(Xs) dLs. The distribution of (X,K)

starting from (X0,K0) = (x, y) will be denoted Px,y. First, we will prove Harris irreducibility for
(X,K) under Px,y, with respect to 2d-dimensional Lebesgue measure.

In order to do so, our main ingredient will be that for t > 0 the law of (Xt,Kt) has a component
that has a strictly positive density with respect to Lebesgue measure on some open set. The idea
behind the proof of this result is that one can find d small balls {Bj}dj=1 on the boundary ∂D such
that
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(i) The normal vector n(x) is ‘almost’ parallel to the j-th unit vector ej for x ∈ Bj .

(ii) With positive probability, the process Xs has visited all of the Bj ’s in chronological order
before time t, but has not hit the boundary ∂D anywhere outside of the Bj ’s.

(iii) The amounts Sj of local time that X has accumulated on the Bj ’s are ‘almost’ independent.

This suggests that at time t, the law of Kt has a positive component which ‘almost’ looks like the
law of a random vector with independent components, each of them having a density with respect
to Lebesgue measure. It follows that the law of Kt has a component which has a density with
respect to d-dimensional Lebesgue measure. Since, as long as X is in the interior of the domain D,
it is just Brownian motion with drift and K remains constant, we conclude that the law of (Xt,Kt)
has a density with respect to 2d-dimensional Lebesgue measure.

The detailed proof is broken into several distinct steps. In the first step, we use a support
theorem and a controllability argument to show that given any point z1 ∈ D, ε > 0 and any final
time t0, the process (Xt,Kt) has a positive probability to be in an ε-neighborhood of (z1, 0) after
time t0/2, whatever its initial condition. In the second step, we present a review of excursion theory
and show how the path of a reflecting Brownian motion can be decomposed into a collection of
excursions and how reflecting Brownian motion up to the first hitting time of some subset U ⊂ D

can be constructed from the excursions of a reflecting Brownian motion conditioned never to hit
U by adding a ‘last excursion’ after a suitably chosen amount of local time spent at the boundary.
This construction is then used in the third step to ‘stitch together’ a reflecting Brownian motion
from d independent reflecting Brownian motions Y j

t . In the final step, we show how to condition
each of the Y j ’s on hitting the boundary ∂D only in Bj and deduce from this that the local time
Kt has a density with respect to Lebesgue measure. We conclude by showing how to combine these
results to obtain the desired Harris irreducibility.

Step 1. Fix any t0, r > 0 and z1 ∈ D. In this step, we will show that for any (x0, y0) ∈ D × Rd

there exists p1 > 0 such that Px0,y0((Xt0/2,Kt0/2) ∈ B(z1, r)× B(0, r)) ≥ p1.
We recall the deterministic Skorokhod problem in D with normal vector of reflection. Suppose

a continuous function f : [0, T ]→ Rd is such that f(0) ∈ D. Then the Skorokhod problem is to find
a continuous function g : [0, T ] → D and a non-decreasing function ` : [0, T ] → [0,∞), such that
`(0) = 0, g(0) = f(0),

∫ T
0 1D(g(s)) d`s = 0, and g(t) = f(t) +

∫ t
0 n(g(s)) d`s. It has been proved in

[LS84] that the Skorokhod problem has a unique solution (g, `) in every C2 domain.
Since D is a bounded smooth domain, the set {n(x)/|n(x)|, x ∈ ∂D} is the whole unit sphere

in Rd. Find x1 ∈ ∂D such that n(x1) = −c0y0 for some c0 > 0. It is elementary to construct a
continuous function f : [0, t0/2]→ Rd such that f(0) = x0, f(t) ∈ D for t ∈ (0, t0/4), f(t0/4) = x1,
f is linear on [t0/4, 3t0/8], f(3t0/8) = x1 +y0, f(t)−y0 ∈ D for t ∈ (3t0/8, t0/2), and f(t0/2)−y0 =
z1. It is straightforward to check that the pair (g, `) that solves the Skorokhod problem for f has
the following properties: g(t) = f(t) for t ∈ (0, t0/4), g(t) = x1 for t ∈ [t0/4, 3t0/8], g(t) = f(t)− y0

for t ∈ (3t0/8, t0/2), and
∫ t0/2

0 n(g(s)) d`s = −y0.
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For a function f1 : [0, t0/2] → Rd with f1(0) ∈ D, let (g1, `1) denote the solution of the
Skorokhod problem for f1. Let BC(f, δ) be the ball in C([0, t0/2],Rd) centered at f , with radius
δ, in the supremum norm. By Theorem 2.1 and Remark 2.1 of [LS84], for any r > 0 there exists
δ ∈ (0, r/2), such that if f1 ∈ BC(f, δ), then g1 ∈ BC(g, r/2). This implies that

sup
t∈[0,t0/2]

∣∣∣ ∫ t0/2

0
n(g1(s)) d`1s −

∫ t0/2

0
n(g(s)) d`s

∣∣∣
≤ sup

t∈[0,t0/2]
(|f1(t)− f(t)|+ |g1(t)− g(t)|)

≤ δ + r/2 ≤ r.

Thus, if f1 ∈ BC(f, δ), then
(
g1(t0/2),

∫ t0/2
0 n(g1(s)) d`1s

)
∈ B(z1, r) × B(−y0, r). Let P̃x denote

the distribution of standard Brownian motion. By the support theorem for Brownian motion,
P̃x0(BC(f, δ)) > p1, for some p1 > 0. Hence, Px0,y0((Xt0/2,Kt0/2) ∈ B(z1, r)× B(0, r)) > p1 > 0.

Step 2. This step is mostly a review of the excursion theory needed in the rest of the argument. See,
e.g., [Mai75] for the foundations of excursion theory in abstract settings and [Bur87] for the special
case of excursions of Brownian motion. See also [Hsu86] for excursions of reflecting Brownian
motion on C3 domains. Although [Bur87] does not discuss reflecting Brownian motion, all the
results we need from that book readily apply in the present context. We will use two different but
closely related exit systems. The first one represents excursions of reflecting Brownian motion from
∂D.

We consider X under a probability measure Px, i.e., X denotes reflecting Brownian motion
without inert drift.

An exit system for excursions of reflecting Brownian motion X from ∂D is a pair (L∗t ,Hx)
consisting of a positive continuous additive functional L∗t and a family of excursion laws {Hx}x∈∂D.
We will soon show that L∗t = Lt. Let ∆ denote a “cemetery” point outside Rd and let C be the space
of all functions f : [0,∞)→ Rd ∪{∆} which are continuous and take values in Rd on some interval
[0, ζ), and are equal to ∆ on [ζ,∞). For x ∈ ∂D, the excursion law Hx is a σ-finite (positive)
measure on C, such that the canonical process is strong Markov on (t0,∞) for every t0 > 0, with
the transition probabilities of Brownian motion killed upon hitting ∂D. Moreover, Hx gives zero
mass to paths which do not start from x. We will be concerned only with “standard” excursion
laws; see Definition 3.2 of [Bur87]. For every x ∈ ∂D there exists a standard excursion law Hx in
D, unique up to a multiplicative constant.

Excursions of X from ∂D will be denoted e or es, i.e., if s < u, Xs, Xu ∈ ∂D, and Xt /∈ ∂D for
t ∈ (s, u), then es = {es(t) = Xt+s, t ∈ [0, u− s)} and ζ(es) = u− s. By convention, es(t) = ∆ for
t ≥ ζ. So et ≡ ∆ if inf{r > t : Xr ∈ ∂D} = t. Let Eu = {es : s ≤ u}.

Let σt = inf{s ≥ 0 : L∗s ≥ t} and let I be the set of left endpoints of all connected open
components of (0,∞) \ {t ≥ 0 : Xt ∈ ∂D}. The following is a special case of the exit system
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formula of [Mai75]. For every x ∈ D,

E x

[∑
t∈I

Zt · f(et)

]
= E x

[∫ ∞
0

ZσsHX(σs)(f) ds
]

= E x

[∫ ∞
0

ZtHXt(f) dL∗t

]
, (6.1)

where Zt is a predictable process and f : C → [0,∞) is a universally measurable function which
vanishes on those excursions et identically equal to ∆. Here and elsewhere Hx(f) =

∫
C fdHx.

The normalization of the exit system is somewhat arbitrary, for example, if (L∗t ,Hx) is an exit
system and c ∈ (0,∞) is a constant then (cL∗t , (1/c)Hx) is also an exit system. Let PDy denote
the distribution of Brownian motion starting from y and killed upon exiting D. Theorem 7.2 of
[Bur87] shows how to choose a “canonical” exit system; that theorem is stated for the usual planar
Brownian motion but it is easy to check that both the statement and the proof apply to reflecting
Brownian motion in D ⊂ Rd. According to that result, we can take L∗t to be the continuous additive
functional whose Revuz measure is a constant multiple of the surface area measure dx on ∂D and
the Hx’s to be standard excursion laws normalized so that for some constant c1 ∈ (0,∞),

Hx(A) = c1 lim
δ↓0

1
δ

PDx+δn(x)(A) (6.2)

for any event A in a σ-field generated by the process on an interval [t0,∞) for any t0 > 0. The
Revuz measure of L is c2 dx on ∂D. We choose c1 so that (Lt,Hx) is an exit system.

We will now discuss another exit system, for a different process X ′. Let U ⊂ D be a fixed closed
ball with positive radius, and let X ′ be the process X conditioned by the event {TXU > σ1}, where
TXU = inf{t > 0 : X ∈ U}. One can show using Theorem 2.1 and Remark 2.1 of [LS84] that for
any starting point in D \ U , the probability of {TXU > σ1} is greater than 0. It is easy to see that
(X ′t, Lt) is a time-homogeneous Markov process. For notational consistency, we will write (X ′t, L

′
t)

instead of (X ′t, Lt).
We will now describe an exit system (L′t,H

′
x,`) for (X ′t, L

′
t) from the closed set D × [0,∞). We

will construct this exit system on the basis of (Lt,Hx) because of the way that X ′ has been defined
in relation to X. It is clear that L′ does not change within any excursion interval of X ′ away from
∂D, so we will assume that H′x,` is a measure on paths representing X ′ only. The local time L′ is
the continuous additive functional with Revuz measure c2 dx on ∂D. For ` ≥ 1 we let H′x,` = Hx.
Let P̂Dy denote the distribution of Brownian motion starting from y ∈ D \U , conditioned to hit ∂D
before hitting U , and killed upon exiting D. For ` < 1, we have

H′x,`(A) = c1 lim
δ↓0

1
δ

P̂Dx+δn(x)(A). (6.3)

Let A∗ ⊂ C be the event that the path hits U . It follows from (6.2) and (6.3) that for ` < 1,

H′x,`(A) = Hx(A \A∗). (6.4)

One can deduce easily from (6.2) and standard estimates for Brownian motion that for some
c3, c4 ∈ (0,∞) and all x ∈ ∂D,

c3 < Hx(A∗) < c4. (6.5)
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Let σ′t = inf{s ≥ 0 : L′s ≥ t}. The exit system formula (6.1) and (6.4) imply that we can construct
X (on a random interval, to be specified below) using X ′ as a building block, in the following
way. Suppose that X ′ is given. We enlarge the probability space, if necessary, and construct a
Poisson point process E with state space [0,∞) × C whose intensity measure conditional on the
whole trajectory {X ′t, t ≥ 0} is given by

µ([s1, s2]× F ) =
∫ 1∧s2

1∧s1
HX′

σ′t
(F ∩A∗) dt. (6.6)

Since µ([0,∞)×C) <∞, the Poisson point process E may be empty; that is, if the Poisson process
is viewed as a random measure, then the support of that measure may be empty. Consider the case
when it is not empty and let S1 be the minimum of the first coordinates of points in E . Note that
there can be only one point (S1, eS1) ∈ E with first coordinate S1, because of (6.5). By convention,
let S1 =∞ if E = ∅. Recall that TXU = inf{t > 0 : Xt ∈ U} and let

TX
′

U = inf{t > 0 : X ′t ∈ U},

T∗ = σ′S1
+ inf{t > 0 : eS1(t) ∈ U}.

It follows from the exit system formula (6.1) that the distribution of the process

X̂t =

{
X ′t if 0 ≤ t ≤ TX′U ∧ σ′S1

,

eS1(t− σ′S1
) if E 6= ∅ and σ′S1

< t ≤ T∗,

is the same as the distribution of {Xt, 0 ≤ t ≤ TXU }.

Step 3. We will now construct reflecting Brownian motion in D from several trajectories, including
a family of independent paths.

Let Uj = B(zj , r) for j = 1, . . . , d+ 1, where zj ∈ D and r > 0 are chosen so that Uj ∩ Uk = ∅
for j 6= k, and

⋃
1≤j≤d+1 Uj ⊂ D.

Recall from the last step how the process X was constructed from a process X ′. Fix some
x1 ∈ U1 and let X1 be a process starting from X1

0 = x1, with the same transition probabilities as
X ′, relative to U2. We then construct Y 1 based on X1, by adding an excursion that hits U2, in
the same way as X was constructed from X ′. We thus obtain a process {Y 1

t , 0 ≤ t ≤ T1}, where
T1 = inf{t > 0 : Y 1

t ∈ U2}, whose distribution is that of reflecting Brownian motion in D starting
with the uniform distribution on Uj , observed until the first hit of U2.

We next construct a family of independent reflecting Brownian motions {Y j}1≤j≤d. For a
fixed j = 2, . . . , d, we let Xj be a process with the same transition probabilities as X ′, relative to
Uj+1, and initial distribution uniform in Uj . We then construct Y j based on Xj , by adding an
excursion that hits Uj+1, in the same way as X was constructed from X ′. We thus obtain a process
{Y j

t , 0 ≤ t ≤ Tj}, where Tj = inf{t > 0 : Y 1
t ∈ Uj+1}, whose distribution is that of reflecting

Brownian motion in D, observed until the first hit of Uj+1.
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Note that for some c5 > 0 and all x, y ∈ Uj+1, j = 1, . . . , d,

Px(X1 ∈ dy and Xt /∈ ∂D for t ∈ [0, 1]) ≥ c5 dy.

We can assume that all Xj ’s and Y j ’s are defined on the same probability space. The last formula
and standard coupling techniques show that on an enlarged probability space, there exist reflecting
Brownian motions Zj , j = 1, . . . , d, with the following properties. For 1 ≤ j ≤ d − 1, Zj0 = Y j

Tj
,

and for some c6 > 0,

P
(
Zj1 = Y j+1

0 and Zjt /∈ ∂D for t ∈ [0, 1]
∣∣∣ {Y k}1≤k≤j , {Zk}1≤k≤j−1

)
≥ c6. (6.7)

The process Zj does not depend otherwise on {Y k}1≤k≤d and {Zk}k 6=j . We define Zd as a reflecting
Brownian motion in D with Zd0 = Y d

Td
but otherwise independent of {Y k}1≤k≤d and {Zk}1≤k≤d−1.

Let
Fj =

{
Zj1 = Y j+1

0 and Zjt /∈ ∂D for t ∈ [0, 1]
}
.

We define a process X∗ as follows. We let X∗t = Y 1
t for 0 ≤ t ≤ T1. If F c1 holds, then we let

X∗t = Z1
t−T1

for t ≥ T1. If F1 holds, then we let X∗t = Z1
t−T1

for t ∈ [T1, T1 + 1] and X∗t = Y 2
t−T1−1

for t ∈ [T1 + 1, T1 + 1 + T2]. We proceed by induction. Suppose that X∗t has been defined so far
only for

t ∈ [0, T1 + 1 + T2 + 1 + · · ·+ Tk],

for some k < d. If F ck holds, then we let

X∗t = Zkt−T1−1−T2−1−···−Tk

for t ≥ T1 + 1 + T2 + 1 + · · ·+ Tk. If Fk holds, then we let

X∗t = Zkt−T1−1−T2−1−···−Tk

for t ∈ [T1 + 1 + T2 + 1 + · · ·+ Tk, T1 + 1 + T2 + 1 + · · ·+ Tk + 1] and

X∗t = Y k+1
t−T1−1−T2−1−···−Tk−1

for t ∈ [T1 + 1 + T2 + 1 + · · ·+ Tk + 1, T1 + 1 + T2 + 1 + · · ·+ Tk + 1 + Tk+1]. We let

X∗t = Zdt−T1−1−T2−1−···−Td

for t ≥ T1 + 1 + T2 + 1 + · · ·+ Td.
By construction, X∗ is a reflecting Brownian motion in D starting from x1. Note that in view

of (6.7), conditional on {Xj
t , t ≥ 0}, j = 1, . . . , d, there is at least probability cd6 that X∗ is a

time-shifted path of Xj
t on an appropriate interval, for all j = 1, . . . , d.

Step 4. In this step, we will show that with a positive probability, the process K can have “almost”
independent and “almost” perpendicular increments over disjoint time intervals. Moreover, the
distributions of the increments have densities in an appropriate sense.
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We find d points y1, . . . , yd ∈ ∂D such that the n(yj)’s point in d orthogonal directions. Let
Cj = {z ∈ Rd : ∠(n(yj), z) ≤ δ0}, for some δ0 > 0 so small that for any zj ∈ Cj , j = 1, . . . , d, the
vectors {zj} are linearly independent. Let δ1 > 0 be so small that for every j = 1, . . . , d, and any
y ∈ ∂D ∩ B(yj , δ1), we have n(y) ∈ Cj .

Let Lj be the local time of Xj on ∂D and σjt = inf{s ≥ 0 : Ljs ≥ t}. It is easy to see that
there exists p2 > 0 such that with probability greater than p2, for every j = 1, . . . , d, we have
Xj
t /∈ ∂D \ B(yj , δ1), for t ∈ [0, σj1]. Let

Rj = sup{t < Tj : Y j
t ∈ ∂D} and Sj = LjRj .

Let F∗ be the event that for every j = 1, . . . , d, Xj
t /∈ ∂D \ B(yj , δ1) for t ∈ [0, σj1] and Sj < σj1.

Then (6.5) shows that Px1(F∗) ≥ p2(1− e−c3)d.
Let Kj

t = Γ
∫ t

0 n(Xj

σjs
) ds and note that if F∗ holds, then Kj

t ∈ ΓCj for all j = 1, . . . , d and
t ∈ [0, 1]. Define for any 0 ≤ ak < bk ≤ k for k = 1, · · · , d,

Λ([a1, b1], [a2, b2], . . . , [ad, bd]) = {K1
t1 +K2

t2 + · · ·+Kd
td

: tk ∈ [ak, bk] for 1 ≤ k ≤ d}.

It is easy to show using the definition of Cj ’s that the d-dimensional volume of Λ([a1, b1], . . . , [ad, bd])
is bounded below by c7

∏
1≤k≤d(bk − ak), and bounded above by c8

∏
1≤k≤d(bk − ak).

Let us consider the processes defined above, conditioned on the σ-field

G = σ
(
{Kj

t , t ∈ [0, 1]}1≤j≤d
)
.

By (6.5) and (6.6), conditional on G, the random variables Sj = LjRj , j = 1, · · · , d, have distributions
whose densities on [0, 1] are bounded below. In view of our remarks on the volume of Λ, it follows
that conditional on G, the vector K1

S1
+ · · · + Kd

Sd
has a density with respect to d-dimensional

Lebesgue measure that is bounded below by c9 > 0 on a ball U∗ with positive radius. We now
remove the conditioning to conclude that K1

S1
+ · · · + Kd

Sd
has a component with a density with

respect to d-dimensional Lebesgue measure that is bounded below on U∗.
Define K∗t = Γ

∫ t
0 n(X∗s)dL̃s and T∗ =

∑d
j=1 Tj , where L̃ is the boundary local time for

reflecting Brownian motion X∗. Using conditioning on F∗, we see that the distribution of K∗T∗
has a component with density greater than c9 on U∗. Since K∗ does not change when X∗ is
inside the domain and X∗ is a reflecting Brownian motion, we conclude that (X∗T∗+1,K

∗
T∗+1) has a

component with a density with respect to 2d-dimensional Lebesgue measure on a non-empty open
set. It follows that for some fixed t∗ > 0, (X∗t∗ ,K

∗
t∗) has a component with a density with respect

to 2d-dimensional Lebesgue measure on a non-empty open set.
We leave it to the reader to check that the argument can be easily modified so that we can

show that for any fixed t0 > 0, (X∗t0/2,K
∗
t0/2

) has a component with a strictly positive density with
respect to 2d-dimensional Lebesgue measure on a non-empty open set. We can now combine this
with the result of Step 1 using the Markov property to see that for some non-empty open set Ũ and
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any starting point (X0,K0) = (x0, y0), the process (Xt0 ,Kt0) has a positive density with respect to
2d-dimensional Lebesgue measure on Ũ under Px0,y0 .

By the Girsanov theorem the same conclusion holds for (X,K) under the measure Qx0,y0 , which,
by the proof of Theorem 2.1, is the reflecting diffusion with inert drift. This proves the theorem.

Theorem 6.2 Consider the SDE (5.3) with σ being the identity matrix, b = 0, and u ≡ n. The
probability distribution π(dx, dy) defined by

π(A) =
∫
A
c11D(x)e−(Γ−1y,y) dx dy, A ⊂ D × Rd,

is the only invariant measure for the solution (X,K) to (5.3).

Proof. In view of Theorem 5.2, all we have to show is uniqueness. If there were more than one
invariant measure, at least two of them (say, µ and ν) would be mutually singular by Birkhoff’s
ergodic theorem [Sin94]. However, we have just shown that there exists a strictly positive measure
ψ which is absolutely continuous with respect to any transition probability, so that in particular,
ψ � µ and ψ � ν. Since µ ⊥ ν by assumption, there exists a set A such that µ(A) = 0 and
ν(Ac) = 0. Therefore, one must have ψ(A) = ψ(Ac) = 0 which contradicts the fact that the
measure ψ is non-zero.

References

[Bas97] R. F. Bass, Diffusions and Elliptic Operators. Berlin, Springer, 1997.

[BBC05] R. F. Bass, K Burdzy and Z.-Q. Chen, Uniqueness for reflecting Brownian motion in lip
domains. Ann. Inst. Henri Poincare Probab. Statist. 41 (2005), 197-235.

[BBC07] R. F. Bass, K Burdzy and Z.-Q. Chen, Pathwise uniqueness for a degenerate stochastic
differential equation. Ann. Probab. 35 (2007) 2385–2418.

[BH91] R. F. Bass and P. Hsu, Some potential theory for reflecting Brownian motion in Hölder
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