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Abstract

We study stochastic partial differential equations of the reaction-diffusion type.
We show that, even if the forcing is very degenerate (i.e. has not full rank), one
has exponential convergence towards the invariant measure. The convergence
takes place in the topology induced by a weighted variation norm and uses a
kind of (uniform) Doeblin condition.

1 Model and Result

We consider the stochastic partial differential equation given by���! #"%$& �'��(*),+ (
�

)
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) ,

�5462 ( 798 $ )
per ([ :<;�= ]) > (SGL)

In this equation,
+

is a polynomial of odd degree with positive leading coefficient
and deg

+@?BA
,
�C2

is the cylindrical Wiener process on DFE 2 ( 798 $ )
per ([ :<;�= ]), and/HG DJIKD is a compact operator which is diagonal in the trigonometric basis. The

symbol L 4 [ :<;�= ] denotes the spatial variable. Further conditions on the spectrum of/
will be made precise below.
In a recent paper [EH01], to which we also refer for further details about the model,

it was shown that this equation possesses a unique invariant measure and satisfies the
Strong Feller property. However, the question of the rate of convergence towards the
invariant measure was left open. The aim of this paper is to show that this rate is
exponential.

There is a fair amount of very recent literature about closely related questions,
mainly concerning ergodic properties of the 2D Navier-Stokes equation. To the au-
thor’s knowledge, the main results are exposed in the works of Kuksin and Shirikyan
[KS00, KS01], Bricmont, Kupiainen and Lefevere [BKL00a, BKL00b], and E, Mat-
tingly and Sinai [ESM00, Mat01], although the problem goes back to Flandoli and
Maslowski [FM95]. The main differences between the model exposed here and the
above papers is that we want to consider a situation where the unstable modes are not
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forced, whereas the forcing only acts onto the stable modes and is transmitted to the
whole system through the nonlinearity. From this point of view, we are in a hypoelliptic
situation where Hörmander-type conditions apply [Hör67, Hör85], as opposed to the
essentially elliptic situation where the unstable modes are all forced and the (infinitely
many) other modes are stabilized by the linear part of the equation.

Returning to the model (SGL), we denote by M�N the eigenvalue of
/

corresponding
to the O th trigonometric function (ordered in such a way that O#PQ: ). We make the
following assumption on the M N :
Assumption 1.1 There exist constants OSR1PH: , T 7 PU: , T $ PV: , W ?HX and Y 4
( W ) =�Z�[\;]W ] such that T 7 O�^ $9_!` M�N ` T $ O�^ $ba , for OcPdO R . (1.1)

There are no assumptions on M N for O ` OCR , in particular one may have M N  : in that
region. Furthermore, OCR can be chosen arbitrarily large.

We denote by egf ( � ) the solution of (SGL) at time
(

with initial condition
�64 D . Ifehf exists and is sufficiently regular, one can define the semigroup i f acting on bounded

functions j and the semigroup i fR acting on finite measures k byl i f jnm ( � )
 

E o l j6pqe f m ( � ) r ,
l i fR k�m ( s )

 
E o l ktpqe ^ 7f m ( s ) r5>

In a recent paper [EH01], to which we also refer for further details about the model,
it was shown that the above model satisfies the following.

Theorem 1.2 Under Assumption 1.1, the solution of (SGL) defines a unique stochas-
tic flow e f on D , thus also defining a Markov semigroup i f . The semigroup i f is
Strong Feller and open set irreducible in arbitrarily short time. As a consequence, the
semigroup i fR acting on measures possesses a unique invariant measure on D .

Recall that a semigroup is said “open set irreducible in arbitrarily short time” if the
probability of reaching a given open set in a given time is always strictly positive.

We denote by k R the unique invariant probability measure of Theorem 1.2. We
will show in this paper that for every probability measure k , we have i fR kuIKk R and
that this convergence takes place with an exponential rate (in time). More precisely,
we introduce, for a given (possibly unbounded) Borel function v G DBI [ =�;9w ], the
weighted variational norm defined on every signed Borel measure k byx x x k x x x y E{z3|}v ( ~ ) k�� (

� ~ )
- z3|}v ( ~ ) k ^ (

� ~ ) ,

where k*� denotes the positive (resp. negative) part of k . When v ( ~ )
 = , we recover

the usual variational norm which we denote by
x x x���x x x

. We also introduce the family of
norms � � �	� on D defined by �	~�� �  ��� � ~�� ,
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where � is the differential operator = )1" $& and � � � is the usual norm on D , i.e.

� � � $q z 7� l x � x $�- x " & � x $ m � L�>
The exact formulation of our convergence result is

Theorem 1.3 There exists a constant �uP�: such that for every � ? = , every � ` W ,
and every probability measure k on D , one hasx x x i fR k ) k*R x x x y���� � ` T�� ^.� f , with v � 8 � ( � )

 � � � � � - = ,

for every
(g? = . The constant T is independent of the probability measure k .

In the sequel, we will denote by � the Markov chain obtained by sampling the solu-
tion of (SGL) at integer times and by i ( ~�; � ) the corresponding transition probabilities.
Theorem 1.3 is a consequence of the following features of the model (SGL).

A. We construct a set � having the property that there exists a probability measure �
and a constant ��Pd: such that i ( ~�; � ) ? �n� ( � ) for every ~ 4 � . This means that� behaves “almost” like an atom for the Markov chain � . This is shown to be
a consequence of the Strong Feller property and the irreducibility of the Markov
semigroup associated to (SGL).

B. The dynamics has very strong contraction properties in the sense that it reaches
some compact set very quickly. In particular, one can bound uniformly from
below the transition probabilities to a set � satisfying property A.

These conditions yield some strong Doeblin condition and thus lead to exponential
convergence results. The intuitive reason behind this is that, for any two initial mea-
sures, their image under i'R has a common part, the amount of which can be bounded
uniformly from below and cancels out. This will be clarified in the proof of Proposi-
tion 2.1 below.

The remainder of the paper is organized as follows. In Section 2, we show how to
obtain Theorem 1.3 from the above properties. The proof will be strongly reminiscent
of the standard proof of the Perron-Frobenius theorem. In Section 3 we then show the
contraction properties of the dynamics and in Section 4 we show that every compact
set has the property A.
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2 A Variant of the Perron-Frobenius Theorem

The following proposition shows, reformulated in a more rigorous way, why the prop-
erties A. and B. yield exponential convergence results towards the invariant measure.
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Proposition 2.1 Let � be a Markov chain on a measurable space � and let � satisfy
the following properties:

a. There exist a measurable set � , a positive constant � and a probability measure� R such that for every measurable set s and every ~ 4 � , one has i ( ~�;]s )
?�n��R ( s ).

b. There exists a constant ����P,: such that i ( ~�;]� )
? ��� for every ~ 4 � .

Then � has a unique invariant measure k R and one has for every probability measurek the estimate
x x x i��R k ) k R x x x ` X ( = ) ����� ) ^ ��  $ .

Proof. The first observation we make is that for every probability measure k one has
by property a., l i R k�m ( � )

 z�¡ i ( ~�;¢� ) k (
� ~ )

? � � >
As a consequence of this and of property b., one has for every measurable set s the
bound l i $R k�m ( s )

? zC£ i ( ~*;]s )
l i R k�m ( � ~ )

? ��� � � R ( s ) > (2.1)

Define the constant ¤  ����� . An immediate consequence of (2.1) is that for any proba-
bility measure k , one has x x x i $R k ) ¤���R x x x  = ) ¤�>
Now take any two probability measures k and � . Denote by ¥ � the positive (resp.
negative) part of k ) � . Since k and � are probability measures, one has

x x x ¥S� x x x  x x x ¥ ^ x x x  §¦ , say. Then, since i R preserves probability, one hasx x x i $R k ) i $R � x x x  x x x i $R ¥�� ) i $R ¥ ^ x x x ` x x x i $R ¥�� )1¦ ¤���R x x x - x x x i $R ¥ ^ )1¦ ¤���R x x x` X�¦
( = ) ¤ )  ( = ) ¤ ) x x x k ) � x x x >

This completes the proof of Proposition 2.1.

Theorem 1.3 is then an easy consequence of the following lemmas.

Lemma 2.2 For every � ` W , every
( P¨: , and every � ? = , there exists a constantTh� 8 ��8 f such that for every finite measure k on D one hasx x x i fR k x x x y���� � ` T � 8 ��8 f x x x k x x x , (2.2)

with i fR the semigroup acting on measures solving (SGL).

Lemma 2.3 For every compact set �ª©,D , there exists a probability measure �CR and
a constant ��P,: such that i ( ~*; � ) ? �n��R ( � ) for every ~ 4 � .

Proof of Theorem 1.3. Fix once and for all � ` W and � ? = . By Lemma 2.2, there ex-
ist constants T and � such that the set �  ¬« ~ 4 D x �	~­� � ` T�® satisfies i ( ~�;¢� )

? �
for every ~ 4 D . By Lemma 2.3, we can apply Proposition 2.1 to findx x x i �R k ) k R x x x ` X � ^.� � ,
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for some �,P¯: and for ° any integer. Since i fR preserves positivity and probability,
one immediately gets the same estimate for arbitrary real times. By Lemma 2.2 and the
invariance of k R , this yields for some constant T ,x x x i f±� 7R k ) k R x x x y���� ² ` T�� ^%� f >
The proof of Theorem 1.3 is complete.

Remark 2.4 Writing v instead of v � 8 � , condition (2.2) is equivalent to the statement
that E ³�v ( � )

` T for all ~ 4 D . It is also possible to achieve exponential convergence
results if this condition is replaced by the weaker condition that

E ³�v ( � )
`µ´Q¶ v ( ~ ) for ~ 4 Dµ·g� ,¸

for ~ 4 � ,
(2.3)

with ¶ 4 ( :\;�= ), ¸ P{: and � some compact set. The proof is somewhat lengthy and
so we do not give it here. The interested reader is referred to [MT94, RBT01]. The
difference in the results is that one gets an estimate of the typex x x i f±� 7R k ) k R x x x y ` T�� ^%� f x x x k x x x y >
So strong convergence towards the invariant measure holds for measures with finitex x x	��x x x y

-norm and not necessarily for every probability measure.

The remainder of the paper is devoted to the proof of Lemmas 2.2 and 2.3.

3 Contraction Properties of the Dynamics

This section is devoted to the proof of Lemma 2.2. We reformulate it in a more conve-
nient way as

Proposition 3.1 For every � ? = , every � ` W , and every time
( P¹: , there is a

constant T ��8 f 8 � P,: such that, for every ~ 4 D , one has

E
l ��e f ( ~ ) � � � m ` T ��8 f 8 �t> (3.1)

Proof. We define the linear operator �  = )º" $& and the stochastic convolution2¼»
(
(
)
 z f� � ^ » ( f ^%½ ) /1�C2 ( ¾ ) >

With these notations, the solution of (SGL) reads

ehf ( ~ )
 � ^ » f ~ ) z f� � ^ » ( f ^%½ ) + l e ½ ( ~ ) m � ¾ -02¼» (

(
) > (3.2)

In a first step, we show that for every couple of times :À¿ ( 7 ¿ ( $ , there exists a
constant T ��8 fÂÁ 8 f±Ã independent of the initial condition ~ such that

E o supf Á	Ä ½ Ä f Ã ��e ½ ( ~ ) � L Å r ` T ��8 f Á 8 f Ã > (3.3)
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For this purpose, we introduce the auxiliary process ��f ( ~ ) defined by �Æf ( ~ )
 ehf ( ~ )

)2¼»
(
(
). We have for �Æf the equation

� f ( ~ )
 ��^ » f ~ ) z f� ��^ » ( f ^.½ ) + l � ½ ( ~ )

-02 »
( ¾ ) m � ¾ ,

i.e. �'f ( ~ ) can be interpreted pathwise as the solution of the PDEÇ� f  �) �È� f ),+ l � f -02 » (
(
) m , � �  ~5> (3.4)

If we denote by M the degree of
+

(remember that M ?ÉA ), we have, thanks to the
dissipativity of � , the inequalityÊ ^ ���'f9� L ÅÊ ( ` ¶ 7 ) ¶ $ ���'f	��ËL Å - ¶�Ì � 2�» (

(
) ��ËL Å , (3.5)

where the ¶�Í are some strictly positive constants and
Ê ^ Z Ê ( denotes the left lower

Dini derivative. An elementary computation allows to verify that the solutions of the
ordinary differential equation

ÇÎ  Ï) ¶ Î Ë -¬Ð (
(
) (with positive initial condition andÐ

( ¾ ) P,: ) satisfy the inequalityÎ ( ( ) ` ( M ¶ ( ) ^ 7   ( Ë ^ 7 ) - z f� Ð ( ¾ ) � ¾ , (3.6)

independently of the initial condition. Standard estimates on Gaussian processes show
furthermore that for every

( Pd: and every � ? = , there exists a constant T ��8 f such that

E
l

sup½¢Ñ [
� 8 f ] � 2¼» ( ¾ ) � �L Å m ` T ��8 fg>

Combining this with (3.6), we get (3.3).
It remains to exploit the dissipativity of the linear operator � and the local bound-

edness of the nonlinearity to get the desired bound (3.1). We write for ¾ 4 [
( Z X ; ( ] the

solution of (SGL) ase ½ ( ~ )
 � ^ » ( ½¢^ f  ]Ò ) e f  ]Ò ( ~ )

) z ½f  bÒ � ^
»

( ½¢^%Ó ) + l e Ó ( ~ ) m ��Ôq- z ½f  ]Ò � ^
»

( ½¢^�Ó ) /1�C2 (
Ô
) >

Note that the last term of this equality has the same probability distribution as
2�»

( ¾ )( Z�Õ ). Since ��� ^ » f ~�� ` ( ^ 7   $ �	~­� L Å , we have (remember that M  deg
+

):

E o supf   $ Ä ½ Ä f ��e ½ ( ~ ) � � r ` T ��8 f - T ��8 f E l supf  ]Ò Ä ½ Ä Ì f  ]Ò � 2¼» ( ¾ ) � � m- T E Ö supf   $ Ä ½ Ä f o�z ½f  ]Ò ( ¾ )ºÔ ) ^ 7   $\×× + l e Ó ( ~ ) m ××
L Å ��Ô r ��Ø` T ��8 f - T ��8 f E o supf  bÒ Ä ½ Ä f ×× e ½ ( ~ )

×× � Ë
L Å r ` T ��8 f >

In these inequalities, we used (3.3) and the fact that E
l
sup ½¢Ñ [

� 8 f ] � 2�» ( ¾ ) � � � m is finite
for every � ` W , every

( P¬: and every � ? = . This technique can be iterated, using
the fact that ��� ^ » f ~­� � � 7   $ ` ( ^ 7   $ ��~�� � , until one obtains the desired estimate (3.1).
The proof of Proposition 3.1 is complete.



STRONG FELLER CHAINS AND SMALL SETS 7

4 Strong Feller Chains and Small Sets

The aim of this section is to show that a sufficient condition for the existence of sets
with the property a. of Proposition 2.1 is that the Markov chain is open set irreducible
and has the Strong Feller property.

We follow closely [MT94] in our definitions. The main difference with their results
is that we drop the assumption of local compactness of the topological base space and
that our estimates hold globally with respect to the initial condition. We will adopt the
following notations:

The symbol � stands for an arbitrary Polish space, i.e. a complete, separable metric
space. The symbol � stands for a Markov chain on � . We denote by i ( ~�;¢s ) the tran-
sition probabilities of � . The Ù -step transition probabilities are denoted by i�Ú ( ~�;¢s ).
The symbol Û ( � ) stands for the Borel Ü -field of � .

Definition 4.1 A set � 4 Û ( � ) is called small if there exists an integer ÙÝPH: , a
probability measure � on � , and a constant �ÞPß: such that i Ú ( ~�;]s )

? ��� ( s ) for
every ~ 4 � and every s 4 Û ( � ). If we want to emphasize the value of Ù , we call a
set Ù -small.

With this definition, we reformulate Lemma 2.3 as

Theorem 4.2 If � is irreducible and Strong Feller, every compact set is
X
-small.

The main step towards the proof of Theorem 4.2 is to show the existence of small
sets which are sufficiently big to be “visible” by the dynamics. Recall that a set s is
said to be accessible if i ( ~�;¢s ) P,: for every ~ 4 � . One has,

Proposition 4.3 If � is irreducible and Strong Feller, there exist accessible small sets.

Proof of Theorem 4.2. Recall that Doob’s theorem guarantees the existence of a prob-
ability measure k � such that the transition probabilities i ( ~*; � ) are all equivalent tok � . This is a consequence of the Strong Feller property and the irreducibility of � .

By Proposition 4.3 there exists a small set s such that k � ( s ) P,: . For every ~ 4 �
and every arbitrary

Ê 4 Û ( � ), we then have

i Ú � 7 ( ~�; Ê )
? z<àái ( Î ; Ê ) i Ú ( ~*; � Î ) ? i ( ~�;¢s ) infâ Ñ à i ( Î ; Ê )

? ��i ( ~�;¢s ) � ( Ê ) ,

for some ÙãPV: , �dPä: and a probability measure � . Since, by the Strong Feller
property, the function ~æåIçi ( ~*;]s ) is continuous and, by the accessibility of s , it is
positive, there exists for every compact set T¨©è� a constant ���.P,: such that

inf³ Ñ�é i Ú � 7 ( ~�; Ê )
? � � � ( Ê ) >

The proof of Theorem 4.2 is complete.

The next subsection is devoted to the proof of Proposition 4.3.
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4.1 Existence of accessible small sets

In this subsection, we will work with partitions of � . We introduce the following
notation: if ê is a partition of � , we denote by ê ( ~ ) the (only) element of ê that
contains ~ . With this notation, one has the following theorem, a proof of which can be
found e.g. in [Doo53, p. 344].

Theorem 4.4 (Basic Differentiation Theorem) Let ( �ë;]ì�;bk ) be a probability space
and ê � be an increasing sequence of finite measurable partitions of � such that theÜ -field generated by í � ê � is equal to ì . Let � be a probability measure on � which
is absolutely continuous with respect to k with density function î . Define the sequence
of functions î � by

î � ( ~ )
 ðïñò ñó

� ( ê � ( ~ ))k ( ê � ( ~ ))
if k ( ê � ( ~ )) P,: ,: if k ( ê � ( ~ ))

 : .
Then there exists a set ô with k ( ô )

 : such that lim ��õ¼ö î � ( ~ )
 î ( ~ ) for every~ 4 �5·gô .

This theorem is the main ingredient for the proof of Proposition 4.3.
The first point one notices is that if � is a Polish space, one can explicitly construct a

sequence ê � of partitions that generate the Borel Ü -field. Choose a sequence
« ~ Í ®�öÍø÷ 7

of elements which are dense in � (the existence of such a sequence is guaranteed by
the separability of � ) and a sequence

« ¤�ù�®�öù ÷ 7 such that ¤�ùúP¯: and limù õ�ö ¤�ù  : .
Denote by û ( ~�; Ô ) the open ball of radius

Ô
and center ~ . We then define the sets ü ùÍ

( ý ? = and þ ? : ) by ü �Í  � , ü ùÍ  û ( ~ Í ;b¤�ù ) >
This defines an increasing sequence of finite partitions ê � by ê �  ÿ Í 8 ù � � « ü ùÍ ®( � denotes the refinement of partitions). We denote by ì ö the Ü -field generated byí � ê � . Since every open set �0©u� can be written as a countable union

�  ���� ü ùÍ x ü ùÍ ©��
	 ,

the open sets belong to ì ö and so ì ö  Û ( � ). This construction guarantees the
applicability of the Basic Differentiation Theorem to our situation. We are now ready
to give the

Proof of Proposition 4.3. Let us denote by � ( ~�; Î ) a jointly measurable version of the
densities of i ( ~*; � ) with respect to k � .

We define for every ~*; Î 4 � the sets � ³ 4 Û ( � ) and � Râ 4 Û ( � ) by

� ³  �� Î 4 � x � ( ~*; Î ) P 7$ 	 , � Râ  �� ~ 4 � x � ( ~�; Î ) P 7$ 	 ,

and the set � $ 4 Û ( �
�c� ) by

� $  ��
( ~�; Î ) 4 �
�c� x � ( ~�; Î ) P 7$ 	�>



STRONG FELLER CHAINS AND SMALL SETS 9

�

�

~
� $ �.³
ê � ( � ;�� )

��� (� )
ê � ( � )

�

�
�

� $
� R� ê � ( ��;�� )

��� (

� )

ê � ( � )

Figure 1: Construction of
Ê

and � .

Since i ( ~�;b� )
 = for every ~ 4 � , one has k � ( �.³ ) P@: for every ~ and thereforek $� ( � $ )  �� ¡ k � ( �.³ ) � k � ( ~ ) P0: , where k $�  k � �ck � . Define the subset � Ì of � Ì by

� Ì  ��
( ~�; Î ; � )

4 � Ì x ( ~�; Î ) 4 � $ and ( Î ; � )
4 � $ 	 > (4.1)

One has similarly k Ì� ( � Ì )  ��� Ã k � ( � â ) � k $� ( ~�; Î ) PV: . Let us now define the setsê � ( ~ ) as above and define ê � ( ~�; Î )  ê � ( ~ ) �1ê � ( Î ).
By Theorem 4.4 with k  k $� and �  k $� x � Ã , there exists a k $� -null set ô such that

for ( ~�; Î ) 4 � $ ·gô one has

lim��õ¼ö k $�
l � $�� ê � ( ~�; Î ) mk $� l ê � ( ~*; Î ) m  =Æ>

Since on the other hand k Ì� ( � Ì ) P0: , there exist a triple (
� ; � ; � ) and an integer ° such

that k $� l ê � (
� ; � ) m P0: , k $� l ê � ( ��;�� ) m Pd: , andk $� l � $ � ê � (

� ;�� ) m ?�!" k $� l ê � ( � ;�� ) m , (4.2a)k $� l � $ � ê � ( ��;�� ) m ?�!" k $� l ê � ( ��;�� ) m�> (4.2b)

This means that � $ covers simultaneously seven eights of the “surfaces” of both setsê � ( � ;�� ) and ê � ( ��;�� ). (See Figure 1 for an illustration of this construction.) As a
consequence of (4.2a), the setÊ  #� ~ 4 ê � ( � )

x k � l � ³ � ê � ( � ) m ? ÌÒ k � l ê � ( � ) m$	 ,

satisfies k � ( Ê )
? 7$ k � l ê � ( � ) m . Similarly, the set

�  #� � 4 ê � ( � )
x k � l � R� � ê � ( � ) m ? ÌÒ k � l ê � ( � ) m%	 ,

satisfies k � ( � )
? 7$ k � l ê � ( � ) m . On the other hand, one has by the definitions of �

and
Ê

that for ~ 4 Ê and � 4 � , k � ( � ³ � � R� )
? 7$ k � l ê � ( � ) m . Thus

� $ ( ~*; � )
? z �$&('���)* � ( ~*; Î )� ( Î ; � ) k � ( � Î ) ? =Õ k � ( ��³ � � R� )

? =[ k � l ê � ( � ) m , (4.3)
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for every ~ 4 Ê and every Î 4 � . Defining a probability measure � by setting� ( + )
 k � ( + � � ) Z�k � ( � ), there exists �0PV: such that for every ~ 4 Ê , one hasi ( ~�; + )
? ��� ( + ) and thus

Ê
is small. Since k � ( Ê ) P§: , the proof of Proposition 4.3

is complete.
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[Hör67] L. Hörmander, Hypoelliptic Second Order Differential Equations, Acta Math. 119
(1967), 147–171.
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