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ABSTRACT. We study approximations to a class of vector-valued equations of
Burgers type driven by a multiplicative space-time white noise. A solution theory
for this class of equations has been developed recently in [Hairer, Weber, Probab.
Theory Related Fields, 2013]. The key idea was to use the theory of controlled
rough paths to give definitions of weak / mild solutions and to set up a Picard
iteration argument.

In this article the limiting behaviour of a rather large class of (spatial) approx-
imations to these equations is studied. These approximations are shown to con-
verge and convergence rates are given, but the limit may depend on the particular
choice of approximation. This effect is a spatial analogue to the Itô-Stratonovich
correction in the theory of stochastic ordinary differential equations, where it
is well known that different approximation schemes may converge to different
solutions.

1. INTRODUCTION

The aim of the present paper is to study approximations to vector-valued sto-
chastic Burgers-like equations with multiplicative noise. These equations are of
the form

∂tu = ν ∂2
xu+ F (u) +G(u)∂xu+ θ(u) ξ , (1.1)

where the function u = u(t, x;ω) ∈ Rn is vector-valued. We assume that the
functions F : Rn → Rn and G, θ : Rn → Rn×n are smooth and the products
in the terms G(u)∂xu as well as in θ(u)ξ are to be interpreted as matrix vector
multiplication. The noise term ξ denotes an Rn-valued space-time white noise and
the multiplication should be interpreted in the sense of Itô integration against an
L2-cylindrical Wiener process.

In the case G = 0, approximations to (1.1) have been very well studied: we re-
fer to [Gyö98b, Gyö99, DG01] for some of the earlier results in this direction. For
non-zero G, there is a clear distinction between the gradient case, where G = ∇G
for some sufficiently regular function G : Rn → Rn (so that ∂tu = G(u)∂xu
would describe a system of conservation laws), and the general case. In the gra-
dient case, existence and uniqueness for (1.1) has been known at least since the
nineties [DPDT94, Gyö98a] and convergence results for numerical schemes have,
for example, been obtained in [AG06, JB09].

The emphasis of the present article is on the general, non-gradient, case. A
satisfactory solution theory for the general case is much more involved than the
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gradient case and has been given only very recently [Hai12, HW13]. The difficulty
in treating (1.1) lies in the lack of spatial regularity of its solutions. In fact, it
follows from the results in [HW13] that solutions to (1.1) take values in Cα for any
α < 1

2 but not for α = 1
2 . Unfortunately, it turns out that the pairing

Cα × Cα 3 (u, v) 7→ u ∂xv (1.2)

is well-defined if and only if α > 1
2 . Even worse: there exists no “reasonable” Ba-

nach spaceB containing the solutions to the linearised version of (1.1) and such that
(1.2) extends to a continuous bilinear map from B × B into the space of Schwartz
distributions, see for example [Lyo91] and [LCL07]. As a consequence, it is not
clear at all a priori how to interpret the term G(u)∂xu in (1.1) and the classical
approach to the construction of mild solutions fails.

In all of the above mentioned references on the gradient case, this issue is re-
solved by exploiting the conservation law structure of the nonlinearity. This means
that the chain rule is postulated and the nonlinearity is rewritten as

G
(
u(t, x)

)
∂xu(t, x) = ∂xG

(
u(t, x)

)
, (1.3)

which makes sense as a distribution as soon as u is continuous. The approximation
schemes studied e.g. in [AG06, JB09] respect this conservation law structure by
considering natural approximations of ∂xG. For example, it is not difficult to show
that if uε solves

∂tuε = ν ∂2
xuε + F (uε) +

1

ε

(
G
(
uε(t, x+ ε)

)
− G

(
uε(t, x)

))
+ θ(uε) ξ , (1.4)

then uε converges to u for ε ↓ 0. Similarly, full finite difference / element approxi-
mations also converge.

In the non-gradient case, i.e. when such a function G does not exist, this ap-
proach does not work. The key idea developed in [Hai12, HW13] to overcome this
difficulty is the following: in order to define the product G

(
u(t, x)

)
∂xu(t, x) as a

distribution, it has to be tested against a smooth test function ϕ. This expression
takes the form∫ π

−π
ϕ(x)G

(
u(t, x)

)
∂xu(t, x) dx =

∫ π

−π
ϕ(x)G

(
u(t, x)

)
dxu(t, x). (1.5)

The fact that we expect u to behave like a Brownian motion as a function of the
space variable x suggests that one should interpret this expression as a kind of
stochastic integral. In particular, a stochastic integration theory is needed to cap-
ture stochastic cancellations. It turns out that the theory of controlled rough paths
[Lyo98, LQ02, LCL07, Gub04, FV10, GT10] provides a suitable way to deal with
spatial stochastic integrals like (1.5). Using this idea, a concept of solutions is
given in [Hai12, HW13]. These solutions exist and are unique up to a choice of
iterated integral which corresponds to the choice of the integral of u against itself.
This is a situation analogous to the choice between Itô and Stratonovich integral
that is familiar from the classical theory of SDEs.

Even in the gradient case, effects of this non-uniqueness can be observed. A
posteriori, this is not surprising: after some reflection, it clearly appears that pos-
tulating the chain rule (1.3) is a rather bold step to take! Indeed, we have just seen
that the expression (1.5) is akin to a stochastic integral, and we know very well that
the usual chain rule only holds if such an integral is interpreted in the Stratonovich
sense, while it fails if it is interpreted in the Itô sense. In [HM12] approximations
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to (1.1) are studied in the special case G = ∇G when the noise is additive, i.e. if
θ(u) = 1. For a whole class of different natural approximation schemes, conver-
gence to a stochastic process ū is shown. The main difference with previous works
is that in [HM12], natural discretisations of G(u) ∂xu instead of natural discretisa-
tions of ∂xG(u) are considered. A typical example of the type of discretisation for
the nonlinearity considered there is

G
(
u(t, x)

) 1

ε

(
u(t, x+ ε)− u(t, x)

)
. (1.6)

In general, the limiting process ū = limε→0 uε turns out not to be a solution of
(1.1) in the classical sense. Instead, it solves a similar equation with an additional
reaction term. This extra term depends on the specific choice of approximation and
it can be calculated explicitly. As noted in [HM12], this additional term is exactly
the correction that appears when changing to a different stochastic integral.

In the present work, these approximation results are extended to the non-gradient
case with multiplicative noise. We study a wide class of approximations (essen-
tially the same as in [HM12] but with slightly different technical assumptions) and
extend the convergence result to the general case. Unsurprisingly, the techniques
we use are quite different from [HM12], since the notion of solution for the limit-
ing object is completely different. We make full use of the machinery developed
in [Hai12, HW13] and we develop a method to include approximations to rough
integrals. In particular, we do obtain an explicit rate of convergence of the order
ε

1
6
−κ for κ arbitrarily small.
There are several motivations for this work: Equation (1.1) appears, for example,

in the path sampling algorithm introduced in [HSV07] (see also [Hai12]). So far,
the fact that the limit depends on the specific choice of approximation scheme had
been shown only in the gradient case with additive noise. In this work we complete
the picture by showing that the same effect can be observed in the general case and
we obtain an expression for the correction term that arises.

Another main motivation is to illustrate how the rough path machinery can be
used to obtain concrete approximation results, including convergence rates. This is
particularly interesting, as similar techniques were recently used in [Hai13] to give
a solution theory for the KPZ equation [KPZ86]

∂th = ∂2
xh+ λ(∂xh)2 −∞+ ξ ,

where ξ denotes space-time white noise and “∞” denotes an “infinite constant” that
needs to be subtracted in order to make sense of the diverging term (∂xh)2. This
equation is a popular model for surface growth (see e.g. [Cor11] and the references
therein). It is conjectured that a large class of microscopic surface growth models
(e.g. the lattice KPZ equation [SS09] and variations on the weakly asymmetric
simple exclusion process [GJ10, Ass11]), converge to h in suitable scaling limits,
but so far this has only been shown for the weakly asymmetric simple exclusion
process [BG97].

The present article provides a case study illustrating how one can obtain approx-
imation results for a class of equations exhibiting similar features to those of the
KPZ equation (see [Hai13, Section 4]). In this sense, the present work is really
a “proof of concept” that lays the foundations for further analytical investigations
into the universality of the KPZ equation. Notice that although the KPZ equation
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has additive noise, the construction in [Hai13] yields an equation that is very close
to the case of multiplicative noise treated here.

1.1. Framework and main result. For ε > 0 we consider a class of approximat-
ing stochastic PDEs given by

duε =
(
ν∆εuε + F (uε) +G(uε)Dεuε

)
dt+ θ(uε)HεdW

uε(0) = u0
ε .

(1.7)

Here, as usual, we have replaced the formal ξ with the stochastic differential of a
cylindrical Brownian motion W on L2. The integral against dW should further-
more be interpreted in the Itô sense. For simplicity, we assume that x takes values
in [−π, π] and we endow (1.7) with periodic boundary conditions. We do not ex-
pect our results to significantly depend on this choice. Throughout the paper we
will assume that F ∈ C1, G ∈ C3, and θ ∈ C2.

The operators ∆ε, Dε, and Hε appearing in (1.7) are Fourier multipliers provid-
ing approximations to ∂2

x, ∂x and the identity respectively. In terms of their action
in Fourier space, they are given by

∆̂εu(k) = −k2f(εk)û(k) , (1.8a)

D̂εu(k) = ikg(εk)û(k) , (1.8b)

ĤεW (k) = h(εk)Ŵ (k) . (1.8c)

Throughout the paper we will make some standing assumptions on the cut-off func-
tions f , g and h.

Assumption 1.1. The function f : R → (0,+∞] is even, satisfies f(0) = 1, and
is continuously differentiable on an interval [−δ, δ] around 0. Furthermore, there
exists cf ∈ (0, 1) such that f(k) ≥ cf for all k > 0.

Besides this weak regularity assumption of f near the origin, we also need a
global bound on its oscillations. In order to state this bound, we introduce the
family of functions

bt(k) = exp
(
− k2f(k) t

)
.

With this notation at hand, we assume that

Assumption 1.2. The functions bt are uniformly bounded in the bounded variation
norm:

sup
t>0

∣∣bt∣∣BV
<∞ .

We make the following assumption on the approximation of the spatial deriva-
tive.

Assumption 1.3. There exists a signed Borel measure µ such that∫
R
eikx µ(dx) = ik g(k) ,

and such that

µ(R) = 0, |µ|(R) <∞,
∫
R
xµ(dx) = 1,

∫
R
|x|

5
2 |µ|(dx) <∞ . (1.9)

In particular, we have (Dεu)(x) := 1
ε

∫
R u(x + εy)µ(dy), where we identify

u : [−π, π]→ R with its periodic extension on all of R.
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Note that the caseDεu(x) = 1
ε (u(x+ε)−u(x)) mentioned in (1.4) and (1.6) is

included as special case µ = δ1 − δ0. Finally, we make the following assumption
on the approximation of the noise.

Assumption 1.4. The function h is even, bounded and so that h2/f is of bounded
variation. Furthermore, h is twice differentiable at the origin with h(0) = 1 and
h′(0) = 0.

Note that the assumptions on g and h are identical to those imposed in [HM12].
Regarding the function f , Assumption 1.1 is actually weaker than the correspond-
ing assumption in [HM12]. However, we require the additional Assumption 1.2.
This assumption is not too restrictive and in particular all the examples discussed
in [HM12] satisfy it. See Remark 1.9 below for the main reason why this addi-
tional assumption is required. Note that the assumptions on f do not imply that the
approximated heat semigroup Sε(t) := et∆ε is continuous at 0 in the space of con-
tinuous functions. This is natural in the context of numerical approximations, since
these would always involve the projection onto a finite-dimensional subspace. See
Subsections 2.2 and 2.3 below for a more detailed discussion of this point.

Let ū be the solution of the equation

dū =
(
ν∂2

xū+ F (ū) +G(ū)∂xū
)
dt+ θ(ū) dW ,

ū(0) = u0 .
(1.10)

In this equation, the vector valued function F̄ is given by

F
i

:= (F i − Λ θjk∂jG
i
l θ
l
k) , (1.11)

where we follow the convention to sum over repeated indices. The correction con-
stant Λ can be calculated explicitly as

Λ :=
1

2πν

∫
R+

∫
R

(1− cos(yt))h2(t)

t2f(t)
µ(dy) dt . (1.12)

Note that a straightforward calculation shows that Λ is indeed well-defined, as
a consequence of the fact that h2 . f by assumption and that |µ| has a finite
second moments. The constant Λ is identical to the constant appearing in [HM12].
There, it has been calculated for several natural approximation schemes including
the case where only the nonlinearity is discretised, as well as a finite difference and
a Galerkin discretisation.

Note that in the non-gradient case G 6= ∇G, (1.10) has to be interpreted as
in [HW13]. Actually, there a slightly different equation is considered – the equa-
tion studied in [HW13] does not include the reaction term F and more importantly,
global boundedness ofG, θ as well as its derivatives up to order three is assumed to
guarantee global existence. Treating the additional reaction term F is a straightfor-
ward modification that does not pose any problem for this approach. In the present
paper, we also drop the assumption on the boundedness of F , G and θ, so we allow
for explosion in finite time. We will deal with this by working up to a suitable
stopping time. More precisely, for any K > 0 we define the stopping times

τ∗K := inf
{
t : |ū(t)|C0 ≥ K

}
,

where | · |C0 denotes the supremum norm. The explosion time of ū is then defined
to be τ∗ = limK→∞ τ

∗
K .

The main result of this article is the following theorem.
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Theorem 1.5. Let α? = 1
2 − κ for some κ > 0. Then, for every κ small enough,

there exists a γ > 0 with limκ→0 γ(κ) = 1
6 such that the following is true.

Let |u0|Cα? <∞ and supε≤1 |u0
ε|Cα? <∞ and denote by uε and ū the solutions

to (1.7) and (1.10). If the initial data u0
ε and u0 satisfy additionally

|u0
ε − u0|C1/3 . εγ ,

then there exists a sequence of stopping times τε satisfying limε→0 τε = τ∗ in
probability, and such that for any γ̃ < γ

lim
ε→0

P
(

sup
0≤t≤τε

|uε(t)− ū(t)|C0 > εγ̃
)

= 0 .

Remark 1.6. As pointed out below in Section 2 and in Appendix A the construction
of the integral

∫
ϕG(u) du involves in principle the choice of iterated integrals of

a certain Gaussian process, but there turns out to exist a canonical choice X. The
solution theory developed in [HW13] still works if we replace X by

X̃(s;x, y) := X(s;x, y)− Λ(y − x) Id ,

but it yields a different solution. In [HW13] it was shown that this solution then
coincides with ū. One can then also interpret this as stating that the approxima-
tions uε converge to solutions of the correct equation (1.1), but where a different
stochastic integral is used to interpret the nonlinearity involving G.

Remark 1.7. In the additive noise case our rate of convergence is not optimal.
Actually, at least in the case where the noise is additive and one only discretises
the derivative, our argument in Sections 4 and 5 would give a better rate. We
believe that in that case a slight improvement of our calculations would yield a rate
of almost ε1/2. We suspect this to be the true rate of convergence in that case.

In the multiplicative case we do not expect the convergence to be very quick and
our rate could be close to optimal. Actually, in [HV11] approximations to (1.1)
were studied numerically. In the case of additive noise the convergence which is
the content of Theorem 1.5 could be observed, but not in the case of multiplicative
noise. It might however be possible to improve the rate of convergence by con-
sidering weak (in the probabilistic sense) convergence, as was observed in [TT90]
and recently exploited in the approximation to (1.1) when G = 0 [Deb11].

Note also that the rate 1
6 obtained here seems unrelated to the “order barrier”

mentioned in [DG01].

Remark 1.8. The condition that the initial conditions are bounded in Cα? and con-
verge in a larger space C

1
3 may seem slightly bulky. We choose to state the result in

this way to obtain the optimal rate of convergence. Note that if u0 has the regular-
ity of Brownian motion and u0

ε is a piecewise linearisation, then these conditions
are satisfied. We also refer to Remark 2.1 for a more detailed discussion about the
initial condition.

Remark 1.9. A crucial technical difference between the present article and [HM12]
comes from the fact that for most of the argument we work in Hölder spaces in-
stead of Sobolev spaces. This is necessary to apply the theory of controlled rough
paths. Some arguments become easier in Hölder spaces because Gaussian random
fields tend to have the same degree of Hölder regularity as Sobolev regularity. The
sample paths of Brownian motion, for example, take values in every Sobolev space
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Hs for s < 1
2 but in no Hs for s ≥ 1

2 . It also takes values in Cα for the same val-
ues of α which is a much stronger statement. (Sobolev embedding would not even
yield continuous sample paths!) Using this additional information, we can skip the
messy high frequency cut-off needed in the proof in [HM12]. The price to pay
is that it is more difficult to get bounds on the approximated heat semigroup. As
the approximations are given in Fourier coordinates, bounds in L2-based Sobolev
spaces are trivial to obtain, but the derivation in Hölder spaces requires some work.
For example, we need the additional Assumption 1.2 to ensure that the approxi-
mations of the heat semigroup are well-behaved not only in Sobolev but also in
Hölder spaces.

Remark 1.10. It is always possible to reduce ourselves to the case ν = 1 by per-
forming a simple time change. For the sake of conciseness, we therefore make this
choice throughout the remainder of this article.

1.2. Structure of the paper. We start Section 2 with a short reminder of the so-
lution theory from [HW13]. Then we introduce the main quantities needed for the
proof of Theorem 1.5 and state the bounds on these. Finally, at the end of this
section we give the proof of our main result. In the remaining sections we give the
proofs for the bounds stated in Section 2. In Section 3 we provide a priori bounds
on the main quantities involved. In Section 4 the convergence of the extra term
is proved. In Section 5 the convergence of the term involving the spatial rough
integrals is shown. The Sections 3 – 5 form the core of our argument. In Section 6
we prove some auxiliary regularity results. Finally, in Appendix A we recall some
basic notions of rough path theory used in this work and in Appendix B we give a
higher-dimensional extension of the classical Garsia-Rodemich-Rumsey Lemma.

1.3. Norms and notation. Throughout the paper we will use a whole zoo of dif-
ferent Hölder type norms and for later reference we provide a list here. For a
normed vector space V we denote by C0(V ) the space of continuous functions
from [−π, π] to V and by B0(V ) the space of continuous functions from [−π, π]2

to V vanishing on the diagonal (i.e. for R ∈ B0(V ) we have R(x, x) = 0 for all
x ∈ [−π, π]). We will often omit the reference to the space V when it is clear from
the context and simply write C0 and B0 instead.

For a given parameter α ∈ (0, 1) we define Hölder-type semi-norms:

|X|α = sup
x 6=y

|X(x)−X(y)|
|x− y|α

and |R|α = sup
x 6=y

|R(x, y)|
|x− y|α

, (1.13)

and denote by Cα resp. Bα the set of functions for which these semi-norms are
finite. The space Cα endowed with | · |Cα = | · |0C + | · |α is a Banach space. Here
| · |C0 denotes the supremum norm. The space Bα(V ) is a Banach space endowed
with | · |α alone. As usual, for α ≥ 1, we will denote by Cα the space of bαc times
continuously differentiable functions whose bαcth derivative is α − bαc Hölder
continuous.

For a function u : [0, T ] × [−π, π] → Rn or u : [0, T ] × [−π, π] → Rn×n and
for any α1, α2 ∈ (0, 1) and t1 < t2 ≤ T we denote by

‖u‖Cα1,α2
[t1,t2]

:= sup
s1,s2∈[t1,t2]
x,y∈[−π,π]

|u(s1, x)− u(s2, y)|
|s1 − s2|α1 + |x− y|α2

+ sup
s∈[t1,t2]
x∈[−π,π]

|u(s, x)| (1.14)
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the inhomogeneous α1, α2-Hölder norm of u. In most cases we will have t1 = 0
and then we simply write

‖u‖Cα1,α2
t

:= ‖u‖Cα1,α2
[0,t]

. (1.15)

If we are only interested in the spatial regularity, we write for γ ∈ (0, 1)

‖u‖Cγ
[t1,t2]

:= sup
s∈[t1,t2]
x,y∈[−π,π]

|u(s, x)− u(s, y)|
|x− y|γ

+ sup
s∈[t1,t2]
x∈[−π,π]

|u(s, x)|, (1.16)

and if t1 = 0 we use ‖u‖Cγt := ‖u‖Cγ
[0,t]

. We simply write

‖u‖C0
[t1,t2]

:= sup
s∈[t1,t2]

sup
x∈[−π,π]

|u(s, x)| (1.17)

and C0
t := C0

[0,t] for the supremum norm. We will also need a similar norm, for
functions that depend on two space variables and that vanish on the diagonal. For
R : [0, T ]× [−π, π]2 → Rn or R : [0, T ]× [−π, π]2 → Rn×n we write

‖R‖Bγ
[t1,t2]

:= sup
s∈[t1,t2]

sup
x 6=y∈[−π,π]

|R(s;x, y)|
|x− y|γ

. (1.18)

Finally, we will sometimes have to allow for blowup of a function near time t1 ≥ 0.
This can be captured by

‖R‖Bγ
[t1,t2],β

:= sup
s∈(t1,t2]

(s− t1)β sup
x,y∈[−π,π]

|R(s;x, y)|
|x− y|γ

, (1.19)

for some β ∈ [0, 1]. As above, if t1 = 0 we write

‖R‖Bγt,β := ‖R‖Bγ
[0,t],β

. (1.20)

We will write Cα1,α2

[t1,t2] , C
γ
[t1,t2], C

0
[t1,t2],B

γ
[t1,t2] and Bγ[t1,t2],β for the spaces of func-

tions for which these norms are finite.
We will avoid the use of indices as much as possible and only use them if expres-

sions would get ambiguous otherwise. When we do use indices, we always use the
convention of summation over repeated indices. We will write A+ = 1

2(A + A∗)

and A− = 1
2(A − A∗) for the symmetric and anti-symmetric part of a matrix A.

The Hilbert-Schmidt norm of a matrix A will simply be denoted by |A|.
Finally, we will use the notation x . y to indicate that there exists a constant C

that does not depend on the relevant quantities so that x ≤ C y. Similarly, x h y
means that C−1x ≤ y ≤ Cx.

2. OUTLINE AND PROOF OF THE MAIN RESULT

We start this section by presenting an outline of the construction of solutions
to (1.1) in Subsection 2.1. In Subsection 2.2 we discuss how the quantities in-
volved behave under approximations. The proofs of the bounds announced in this
subsection form the core of this article and will be presented in the subsequent sec-
tions. Finally, in Subsection 2.3 these bounds will be summarised to give a proof
of Theorem 1.5.
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2.1. Construction of solutions to rough Burgers-like equations. In this section
we give an outline of the construction of local solutions to (1.1). The construction
given here differs slightly from the construction presented in [HW13], as this will
hopefully make the proof of the main result in Subsection 2.3 more transparent.
We comment on the differences below in Remark 2.2 and Remark 2.3. We refer
the reader to Appendix A for the necessary notions of rough path theory. For the
moment, we assume that α is an arbitrary exponent in (1

3 ,
1
2); it will be fixed later

in Subsection 2.3.
Let us start by fixing some notation. Throughout the paper we will write

S(t) = et∆

for the semigroup generated by ∆. Recall that the operator S(t) acts on functions
as convolution (on the torus) with the heat kernel

pt(x) =
1√
2π

∑
k∈Z

e−tk
2
eikx. (2.1)

For adapted L2[−π, π] valued processes θ and F we will frequently write

Ψθ(t) :=

∫ t

0
S(t− s) θ(s) dW (s) and ΦF (t) :=

∫ t

0
S(t− s)F (s) ds.

Then with this notation the mild formulation of (1.1) reads

u(t) = S(t)u0 + Ψθ(u)(t) + ΦF (u)(t) +

∫ t

0
S(t− s)G

(
u(s)

)
∂xu(s) ds , (2.2)

where the symbol
∫

denotes a rough integral which we will define below.
The terms S(t)u0 and the reaction term ΦF (u) do not cause any major difficulty,

so we will concentrate for the moment on the two terms

Ψθ(u)(t) =

∫ t

0
S(t− s) θ(u(s)) dW (s) and

∫ t

0
S(t− s)G

(
u(s)

)
∂xu(s) ds.

As pointed out in the introduction, we will use the theory of controlled rough paths
to interpret the term involving G. We introduce the auxiliary function

Z(t, x) :=

∫ x

−π
G
(
u(t, y)

)
dyu(t, y), (2.3)

and write

Ξu(t) :=

∫ t

0
S(t− s)∂xZ(s) ds =

∫ t

0
∂x
(
S(t− s)Z(s)

)
ds.

We argue below that for every t the rough integral in equation (2.3) defines x 7→
Z(t, x) as an α-Hölder function. Hence the spatial derivative is well defined in
the sense of distributions. The last equality follows because ∂x commutes with
S(t− s). Equivalently, assuming that we know how to define the rough integral in
(2.3), the last identity can be taken as the definition of Ξu.

In order to define the spatial integral on the right-hand side of (2.3) as a rough in-
tegral, for every s ∈ (0, t) we must specify a reference path X(s). These reference
paths must meet the following requirements:

• For every s it must be possible to construct the iterated integrals

X(s;x, y) =:

∫ y

x

(
X(s, z)−X(s, x)

)
⊗ dzX(s, z). (2.4)
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Note here that the right hand side is defined by the values of X. Regard-
ing X itself, we require it to satisfy a number of algebraic and analytic
properties that are natural in view of its interpretation as an “integral”.
• For every s the random function x 7→ u(s, x) must be controlled by X(s),

in the sense that we need to be able find a derivative process u′(s, x) such
that

u(s, y)− u(s, x) = u′(s, x)
(
X(s, y)−X(s, x)

)
+Ru(s;x, y), (2.5)

where the remainderRu vanishes sufficiently fast as |y − x| → 0.
Such reference paths are provided by the stationary, zero mean solution to the linear
stochastic heat equation

∂tX = ∂2
xX + Πξ.

Here Π denotes the orthogonal projection in L2 onto the space of functions with
zero mean. Actually, the construction of X is rather straightforward. The point
is that X is a Gaussian process with explicitly known covariance structure so that
known existence results (see [FV10]) apply. The process X is constructed by eval-
uating (2.4) for a sequence of approximations to X and checking that the sequence
of approximate iterated integrals converges in the right sense. The crucial ingredi-
ent for this calculation is provided by Nelson’s estimate (Lemma B.4) that yields
the equivalence of all moments in a given Wiener chaos.

When checking (2.5) it is sufficient to look at the term Ψθ(u). Actually, the terms
S(t)u0 and ΦF (u) will be C1 in space, so they can be included in the remainderRu

and we need not worry about them. The same turns out to be true for the term Ξu

discussed in (2.3).
For Ψθ(u) we can write

Ψθ(u)(t, y)−Ψθ(u)(t, x) = θ(t, x)
(
X(t, y)−X(t, x)

)
+Rθ(u)(t;x, y).

It is shown in [HW13, Proposition 4.8] that the term Rθ(u) does indeed have the
necessary 2α-regularity near the diagonal as soon as

E

(
sup

s,t∈[0,τ ]
x,y∈[−π,π]

|u(s, x)− u(t, y)|
|s− t|α/2 + |x− y|α

+ sup
t∈[0,τ ]
x∈[−π,π]

|u(t, x)|

)p
(2.6)

is finite for a suitable stopping time τ and large enough p. This is precisely the
regularity we expect for u. With these observations at hand we are ready to set up
a fixed point argument to solve (2.2).

Then for some p ≥ 2 we denote by Ap the space of triples

(u, u′,Ru) ∈ Lp
(
Cα/2,αT

)
× Lp

(
CαT
)
× Lp

(
B2α
T,α/2

)
that satisfy the following conditions:

• The processes t 7→ u(t), t 7→ u′(t), t 7→ Ru(t) are adapted.
• Almost surely, for every t ∈ [0, T ] the triple u(t, ·), u′(t, ·),Ru(t, ·) is

controlled by X(t, ·). To be more precise, we assume that (2.5) holds
almost surely for all s, x, y.

Here the Lp refers to p-th stochastic moments.
It is easy to check thatAp is a closed linear subspace of Lp

(
Cα/2,αT

)
×Lp

(
CαT
)
×

Lp
(
B2α
T,α/2

)
. Then for such a triple (u, u′,Ru) and for any stopping time τ ≤ T it
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makes sense to define

M : (u, u′,Ru) 7→ (ũ, ũ′,Rũ),

where

ũ(t) :=
(
S u0 + Ψθ(u) + ΦF (u) + Ξu

)
(t ∧ τ),

ũ′(t) := θ
(
u(t ∧ τ)

)
,

Rũ(t) := δ
(
S u0 + ΦF (u) + Ξu

)
(t ∧ τ) +

(
δΨθ(u) − θ(u)δX

)
(t ∧ τ).

(2.7)

Here the difference operator δ is defined as

δu(s;x, y) := u(s, y)− u(s, x). (2.8)

Using the bounds mentioned above, we can show that, for u0 ∈ Cα and under
suitable assumptions on τ, κ and p, the operatorM is a contraction from a ball in
Ap into itself.

As usual one can obtain solutions on a longer time interval by iterating this
procedure. For fixed choice of the iterated integral process X, these solutions are
unique.

Remark 2.1. The reason for allowing the remainderRũ to blow up like t−α/2 near
zero lies in the initial condition u0 ∈ Cα. Actually, the regularising property of the
heat semigroup implies that we have

sup
t≤1

tα/2
∣∣S(t)u0

∣∣
C2α . |u0|Cα .

We need this bound to control the contribution of the initial condition to the re-
mainder term.

This issue would be avoided completely if we could assume that u0 ∈ C2α. The
problem is that even under this stronger assumption on the initial condition, after
positive time the solutions u(t) would only attain values in Cα for any α < 1

2 . This
would make it impossible to iterate this construction to get solutions on a longer
time interval.

Remark 2.2. The construction in [HW13] is slightly different as it is split up into
an inner fixed point argument to deal with the term involving G and an outer fixed
point argument to conclude. This corresponds to a semi-implicit Picard iteration

un+1(t) = S(t)u0 +

∫ t

0
S(t− s) θ(un(s)) dW (s)

+

∫ t

0
S(t− s)F

(
un(s)

)
ds+

∫ t

0
S(t− s)G

(
un+1(s)

)
∂xun+1(s) ds.

The advantage of this approach is that it separates more clearly the deterministic
part from the probabilistic part of the construction. The price to pay is that some
stopping arguments get more involved. In terms of the bounds needed, both con-
structions are essentially equivalent.

Remark 2.3. Another difference between the construction presented here and the
one in [HW13] concerns the treatment of the term Ξu. In [HW13] the term Z
defined above in (2.3) is not defined, but Ξu is defined directly as

Ξu(t) :=

∫ t

0

∫ π

−π
pt−s(· − y)G

(
u(s, y)

)
dyu(s, y)ds.
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Then the C1-regularity is shown using the scaling behaviour of the heat kernel pt−s.
In the current context we prefer the new approach (suggested to us by the referee)
because it allows to separate the rough path bounds from the bounds involving the
heat semigroup, which makes the argument more transparent.

2.2. Outline: Behaviour of the main quantities under approximation. In order
to prove Theorem 1.5, we will go through the construction we just described and
see how the terms behave under approximation.

For ε > 0 we denote by Sε(t) = et∆ε the semigroup generated by the approxi-
mate Laplacian defined in (1.8a). Similarly to S(t), it is given by convolution (on
the torus) with a heat kernel

pεt (x) =
1√
2π

∑
k∈Z

e−tk
2f(εk)eikx. (2.9)

As above, for any adapted L2[−π, π] valued processes θ and F we will write

Ψθ
ε(t) =

∫ t

0
Sε(t− s) θ(s)Hε dW (s) and ΦF

ε (t) =

∫ t

0
Sε(t− s)F (s) ds.

Using this notation the mild version of the approximation (1.7) takes the form

uε(t) = Sε(t)u
0
ε + Ψθ(uε)

ε (t) + ΦF (uε)
ε (t)

+

∫ t

0
Sε(t− s)G

(
uε(s)

)
Dεuε(s) ds.

(2.10)

Note that for fixed ε > 0, we do not need rough path theory to solve this fixed
point problem. The existence of local solutions can for example be shown through
a fixed point argument in C0

T . For positive ε the approximate derivative operatorDε

is actually continuous on the space of continuous functions, but the operator norm
blows up as ε goes to zero. Therefore, it will be useful to introduce approximate
reference rough paths (Xε,Xε) and interpret the term involving G on the right-
hand side of (2.10) as an approximation to a rough integral. This allows us to
obtain uniform control as ε→ 0.

Similarly to before, we choose as Xε the stationary, zero mean solution of the
approximated stochastic heat equation

dXε = ∆εXε dt+ ΠHε dW (t) .

This will be used as a reference rough path for the approximate solution. Here,
as above, Π denotes the orthogonal projection on L2 onto the functions with zero
mean. If we extend the cylindrical Brownian motion W to negative times we get

Xε(t) =

∫ t

−∞
Sε(t− s) ΠHε dW (s).

Our first task then consists of checking that for every s the process Xε(s) can in-
deed be lifted to a rough path (Xε(s),Xε(s)), and that for a given adapted process
θ the approximate stochastic convolutions Ψθ

ε are indeed controlled by Xε. This is
established in Section 3. To be more precise, we will give bounds on the Hölder
regularity of Ψθ in Lemma 3.1. The behaviour of (Xε,Xε) as a rough path is
discussed in Lemma 3.3. Finally, in Lemma 3.6 the regularity of the remainder

Rθε(t;x, y) =
(
Ψθ
ε(t, y)−Ψθ

ε(t, x)
)
− θ(t, x)

(
Xε(t, y)−Xε(t, x)

)
(2.11)
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is treated. For all of these quantities we can show convergence as ε goes to zero
towards the corresponding terms for the limiting equation.

Let us point out that, while the derivations of the a priori bounds on Ψθ
ε and on

(Xε,Xε) are rather straightforward, the result for the remainder Rθε requires more
thought. The necessary spatial 2α-regularity is shown with a bootstrap argument.

Once we have established that Ψθ
ε is well behaved, it remains to check the be-

haviour of the term ∫ x

−π
G
(
uε(s, y)

)
Dεuε(s, y) dy (2.12)

when ε ↓ 0. One might hope that for small ε the integral behaves like an approxi-
mation to the rough integral∫ x

−π
G
(
uε(s, y)

)
dyuε(s, y). (2.13)

Unfortunately, this is not always true. As pointed out in Appendix A, rough inte-
grals are limits of second order Riemann sums like (A.5). Since the contribution of
the second order term may not be negligible in the limit, one cannot hope to prove
that the first order expression in the second line of (2.12) approximates the rough
integral (2.13) in general. In order to enforce this convergence, we simply add the
“missing” second order term to the right-hand side of (2.12).

Therefore, we set

Zε(t, x) :=

∫ x

−π
G
(
uε(s, y)

)
Dεuε(s, y) dy

+

∫ x

−π
DG

(
uε(s, y)

)
u′ε(s, y)DεXε(s; y)u′ε(s, y) dy,

(2.14)

where

DεXε(s; y) =
1

ε

∫
R
Xε(s; y, y + εz)µ(dz) ,

and u′ε is a rough path derivative of uε with respect to Xε. We then define

Ξuεε (t) :=

∫ t

0
Sε(t− s)∂xZε(s) ds =

∫ t

0
∂xSε(t− s)Zε(s) ds. (2.15)

We will denote the extra term appearing on the right-hand side of (2.15) by

Υuε
ε (t, ·) :=

∫ t

0

∫ π

−π
pεt−s(· − y)DG

(
uε(s, y)

)
× u′ε(s, y)DεXε(s; y)u′ε(s, y) dy ds.

(2.16)

Actually, here we have hidden a bit of non-trivial linear algebra in the notation.
The expression defining Υuε

ε is trilinear and it is not obvious which term is paired
with which. At this level, this does not matter and we will give a precise definition
in (5.5) below.

In Section 5 we establish that, under suitable assumptions, Ξuεε approximates Ξu

provided that the quantity

Dε = ‖X −Xε‖CαT + ‖X−Xε‖B2α
T

+ ‖u− uε‖CαT + ‖u′ − u′ε‖Cα
[ε2,T ]

+ ‖Ru −Ruε‖B2α
[ε2,T ],α

is small.
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Throughout the calculations we will need uniform in ε smoothing properties of
the approximate heat semigroup Sε. These are established in Section 6. A key
ingredient is Lemma 6.3, a version of the Marcinkiewicz multiplier theorem.

By adding a rough path derivative and a remainder we can then interpret uε as
solution to the fixed point problem for the operator

(uε, u
′
ε,Ruε) 7→ Mε(uε, u

′
ε,Ruε) = (ũε, ũ

′
ε,Rũε)

where

ũε(t) :=
(
Sε u

0
ε + Ψθ(uε)

ε + ΦF (uε)
ε −Υuε

ε + Ξuεε

)
(t ∧ τ) (2.17)

ũ′ε(t) := θ
(
uε(t ∧ τ)

)
,

Rũε(t) := δ
(
Sε u

0
ε + ΦF (uε)

ε −Υuε
ε + Ξuεε

)
(t ∧ τ)

+
(
δΨθ(uε)

ε − θ(uε)δXε

)
(t ∧ τ),

for a suitable stopping time τ (which also depends on ε). Here the difference
operator δ is defined as in (2.8).

As expected, the term Υuε
ε will be responsible for the emergence of an extra

term in the limit. This term will be treated in Section 4, where the convergence of
the term DεXε will be discussed.

It turns out that for ε small enough this term behaves like Λ Id, where Λ is
the constant introduced above in (1.12). Note that the a priori knowledge of the
regularity of Xε would not even imply that the quantity Υuε

ε remains bounded, so
that the proof of its convergence requires to exploit stochastic cancellations. The
relevant bound is given in Proposition 4.1. There, convergence in any stochastic
Lp space with respect to the Sobolev norm H−η, for η > 0 is proved. In the next
subsection we will be able to establish convergence of the triple (uε, u

′
ε,Ruε).

2.3. Proof of the main result. Now we are ready to finish the proof of our main
result, Theorem 1.5, assuming the results from Sections 3 – 6.

Similar to (2.16) we define

Υū(t) := Λ

∫ t

0
S(t− s)

(
DG

(
ū(s)

)
ū′(s) ū′(s)

)
ds (2.18)

where the indices are to be interpreted as in (1.11). Then the mild form of (1.10)
can be written as

ū(t) := S(t)u0 + Ψθ(ū)(t) + ΦF (ū)(t)−Υū(t) + Ξūε (t),

ū′(t) := θ
(
ū(t)

)
,

Rū(t) := δ
(
S u0 + ΦF (ū) −Υū + Ξūε

)
(t) +

(
δΨθ(ū) − θ(ū)δX

)
(t).

(2.19)

Furthermore, for t < τ∗ε the process uε solves the fixed point problem for the
operator Mε defined in (2.17). Recall that τ∗ denotes the explosion time of ū.
Similarly, here τ∗ε denotes the explosion time for uε. Note that the extra term
Υū corresponds to a reaction term and poses no additional problems for the well-
posedness of the equation.

In order to optimize the convergence rate we have to work with three different
Hölder exponents

α? > α ≥ α̃ .
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More precisely for a 0 < κ < 1
12 we set α? = 1

2 − κ. We then fix α = α? − κ to
be a bit smaller and α̃ ∈ (1

3 , α] arbitrary. Note that the regularising property of the
heat semigroup implies that

t
α
2

∣∣S(t)u0
∣∣
2α
. |u0|α and t

α
2

∣∣Sε(t)u0
ε

∣∣
2α
. |u0

ε|α? .
In the case of the heat semigroup S, this is a standard regularity result. For the
approximated semigroup Sε the regularisation is shown in Corollary 6.6.

We will measure the regularity of ū, uε,Rū, and Ruε with norms indexed by α
and α̃. For most terms, the rate of convergence becomes better when measured in
a norm of lower regularity, see for example Lemma 3.1 or Lemma 3.3 below. In
those situations, we use the norms indexed by α̃. But in some estimates it is useful
to use a priori knowledge on the regularity of u that is close to optimal – this is
when we use α. We will use α? to measure the regularity of the initial condition
and the regularity of X and Xε. It is useful to have a little bit more regularity
available for these quantities.

First we introduce the following stopping times. Recall the definitions of the
norms ‖ · ‖Cα/2,αt

, ‖ · ‖Cαt from (1.15) and (1.16). Then for any K > 0 we define:

σXK := inf
{
t ≥ 0: ‖X‖Cα?/2,α?t

≥ K or ‖X‖B2α
t
≥ K

}
, (2.20a)

σuK := inf
{
t ≥ 0:

∥∥ū‖Cα/2,αt
≥ K

}
, (2.20b)

σRK := inf
{
t ≥ 0: |Rū(t)|2α ≥ Kt−

α
2 or |Rū(t)|2α̃ ≥ Kt−

α̃
2

}
. (2.20c)

Here we follow the convention to set the stopping times to be T if the sets are
empty. It follows from the bounds in Sections 3 – 5 that for suitable initial condi-
tions u0 these stopping times are almost surely positive. Remark that for t ≤ σuK
we have

‖ū′‖Cαt = ‖θ(ū)‖Cαt ≤ sup
−K≤|u|≤K

|θ(u)|+ sup
−K≤|u|≤K

|Dθ(u)|K. (2.21)

Then we set

σK = σXK ∧ σuK ∧ σRK .
In order to have a priori bounds on the corresponding ε-quantities, we fix yet an-
other parameter η = α− κ, and introduce the stopping times

%Xε := inf
{
t ≥ 0: ‖X −Xε‖Cα?/2,α?t

≥ 1, or ‖X−Xε‖B2α
t
≥ 1,

or ‖X −Xε‖C0
t
≥ εα? , or |Xε|Dα?,ε ≥ K,

or
∣∣∣DεXε(t)− Λ Id

∣∣∣
H−η
≥ 1
}
, (2.22a)

%uε := inf
{
t ≥ 0:

∥∥ū− uε‖Cαt ≥ 1
}
∧ inf

{
t > ε2 :

∥∥ū− uε‖Cα/2,α
[ε2,t]

≥ 1
}
,(2.22b)

%Rε := inf
{
t > ε2 : |Rū(t)−Ruε(t)|2α ≥ (t− ε2)−

α
2

or |Rū(t)−Ruε(t)|2α̃ ≥ (t− ε2)−
α̃
2

}
, (2.22c)

where again, we set the stopping times equal to T if the sets are empty. Here the
norm Dα?,ε is defined in (3.51) below. In (2.22c) the quantity Ruε is defined as in
(2.17). Again the bounds proved below in Sections 3 – 5 show that these stopping
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times are almost surely positive. Note in particular that Lemma 3.3 implies that for
any t > 0 the probability of {‖X −Xε‖C0

t
≥ εα?} goes to zero.

Finally, define

%K,ε = σK ∧ %Xε ∧ %uε ∧ %Rε .

It is clear from the definition that if %K,ε > 0 and for 0 ≤ t ≤ %K,ε we have
deterministic bounds on

‖Xε‖Cα?/2,α?t
, ‖Xε‖B2α

t
,
∣∣DεXε(t)

∣∣
H−η

,
∥∥uε‖Cαt , ∥∥uε‖Cα/2,α

[ε2,t]

,

‖u′ε‖Cαt = ‖θ(uε)‖Cαt , |Ruε |B2α
[ε2,t],α

, |Ruε |B2α̃
[ε2,t],α̃

.

From now on, to reduce the number of indices, we will write

tε := t ∧ %K,ε.

Most of the rest of this subsection will be devoted to the proof of the following
theorem which will then be shown to imply our main result, Theorem 1.5.

Theorem 2.4. Let the exponents α?, α, α̃ and κ be as stated at the beginning of
this subsection. Suppose that the initial conditions satisfy∣∣u0

∣∣
Cα? < K and

∣∣u0
ε

∣∣
Cα? < K

for some large constant K. Then there exists a constant

γ = γ(α̃, κ) > 0,

such that for any terminal time T > 0 and for any p ≥ 1, we have

E
[
‖ū− uε‖pCα̃Tε

+ ‖ū− uε‖pCα̃/2,α̃
[ε2,Tε]

+ ‖Rū −Ruε‖
p

B2α̃
[ε2,Tε],α̃/2

]
.
∣∣u0 − u0

ε

∣∣p
Cα̃ + εpγ .

(2.23)

Furthermore, for every fixed α̃, the constant γ(α̃, κ) can be chosen arbitrarily close
to 1

2 − α̃ by taking κ > 0 sufficiently small.

Proof of Theorem 2.4. We start by introducing some K̂ > K to be fixed later. We
will also only use the fact that the initial conditions satisfy the bound∣∣u0

∣∣
Cα? < K̂ and

∣∣u0
ε

∣∣
Cα? < K̂ .

This will be useful later on.
The functions F,G, θ will only be evaluated for u with |u| ≤ K + 1. All the

quantities of interest will remain unchanged if we change F,G and θ outside a ball.
Therefore, from now on we can and will make the additional assumption that∣∣F ∣∣C1 <∞ ,

∣∣G∣∣C3 <∞ ,
∣∣θ∣∣C2 <∞ .

For any α̃ ∈ (1
3 , α] we will derive a bound on the quantity

E α̃(t) :=

(
E‖ū− uε‖pCα̃tε

) 1
p

+

(
E‖ū− uε‖pCα̃/2,α̃

[ε2,tε]

) 1
p

+

(
E‖Rū −Ruε‖

p

B2α̃
[ε2,tε],α̃/2

) 1
p

.
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Using the equations (2.19) and (2.17) that ū and uε satisfy, we get the bound

E α̃(t) .
5∑
i=1

I α̃i (t), (2.24)

where

I α̃1 (t) :=
∥∥S(·)u0 − Sε(·)u0

ε

∥∥
Cα̃/2,α̃

[ε2,t]

+
∥∥S(·)u0 − Sε(·)u0

ε

∥∥
Cα̃t

+ sup
0<s≤t

s
α̃
2

∣∣S(s)u0 − Sε(s)u0
ε

∣∣
C2α̃ , (2.25a)

I α̃2 (t) :=
(
E
∥∥Ψθ(ū) −Ψθ(uε)

ε

∥∥p
Cα̃/2,α̃tε

) 1
p

+
(
E
∥∥Rθ(ū) −Rθ(uε)ε

∥∥p
B2α̃

[ε2,tε],α̃/2

) 1
p
, (2.25b)

I α̃3 (t) :=
(
E
∥∥ΦF (ū) − ΦF (uε)

ε

∥∥p
Cα̃/2,α̃tε

) 1
p

+

(
E
(

sup
0<s≤tε

s
α̃
2

∣∣ΦF (ū)(s)− ΦF (uε)
ε (s)

∣∣
C2α̃

)p) 1
p

, (2.25c)

I α̃4 (t) :=
(
E
∥∥Υū −Υuε

ε

∥∥p
Cα̃/2,α̃tε

) 1
p

+
(
E
(

sup
0<s≤tε

s
α̃
2

∣∣Υū(s)−Υuε
ε (s)

∣∣
C2α̃

)p) 1
p
, (2.25d)

I α̃5 (t) :=
(
E
∥∥Ξū − Ξuεε

∥∥p
Cα̃tε

) 1
p

+
(
E
∥∥Ξū − Ξuεε

∥∥p
Cα̃/2,α̃

[ε2,tε]

) 1
p

+
(
E
(

sup
0<s≤tε

s
α̃
2

∣∣Ξū(s)− Ξuεε (s)
∣∣
C2α̃

)p) 1
p
. (2.25e)

Actually, in I α̃1 – I α̃5 we give slightly more information than needed. Note in par-
ticular, that in I α̃3 , I

α̃
4 , and I α̃5 we only allow for blowup at 0, not at ε2. This bound

is stronger.
We start by giving a bound on I α̃1 . For every t > ε2 we get for any λ1 < α?− α̃

that ∥∥S(·)u0 − Sε(·)u0
ε

∥∥
Cα̃/2,α̃

[ε2,t]

≤
∥∥S(·)

(
u0 − u0

ε

)∥∥
Cα̃/2,α̃t

+
∥∥(S(·)− Sε(·)

)
u0
ε

∥∥
Cα̃/2,α̃

[ε2,t]

.
∣∣u0 − u0

ε

∣∣
Cα̃ +

∣∣u0
ε

∣∣
Cα?ε

λ1 .

(2.26)

Here we have used the fact that the heat semigroup is a contraction from Cα to Cα
as well as the time continuity of the heat semigroup in the first term. In the second
term we have used Corollary 6.6, which provides uniform bounds on the spatial
regularisation due to the approximated heat semigroup. We use Lemma 6.7 to get
the temporal regularity.

The remaining terms in (2.25a),∥∥S(·)u0 − Sε(·)u0
ε

∥∥
Cα̃t

and sup
0<s≤t

s
α̃
2

∣∣S(s)u0 − Sε(s)u0
ε

∣∣
C2α̃ , (2.27)
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can be bounded by the same quantity. Here we use that both Lemmas 6.5 and 6.6
regarding the spatial regularity hold for arbitrary times. Hence, using the bounded-
ness of |uε|Cα? we can conclude that

I α̃1 (t) .
∣∣u0 − u0

ε

∣∣
Cα̃ + ελ1 . (2.28)

This is the only part in the argument, where we will use the boundedness of u0
ε

or u0 in the Cα?-norm. Note that the implicit constants are uniform for all u0, u0
ε

satisfying |u0|Cα? ≤ K̂ and |u0
ε|Cα? ≤ K̂ .

The bounds on I α̃2 are derived in Section 3. More specifically, for

p >
6

1− 2α̃
and λ1 = 1− 2α̃− 6

p

we get using Corollary 3.2(
E
∥∥Ψθ(ū) −Ψθ(uε)

ε

∥∥p
Cα̃/2,α̃tε

) 1
p

≤
(
E
∥∥Ψθ(ū) −Ψθ(uε)

∥∥p
Cα̃/2,α̃tε

) 1
p

+
(
E
∥∥Ψθ(uε) −Ψθ(uε)

ε

∥∥p
Cα̃/2,α̃tε

) 1
p

. t
λ1
4

(
E
∥∥θ(ū)− θ(uε)

∥∥p
C0
tε

) 1
p

+ ελ1α E
(∥∥θ(uε)∥∥pCαtε) 1

p

. t
λ1
4

(
E
∥∥ū− uε∥∥pC0

tε

) 1
p

+ ελ1α
(
E
(

1 +
∥∥uε∥∥pCαtε)) 1

p

. t
λ1
4 E α̃(t) + ελ1α(K + 1).

(2.29)

In passing from the second to the third line, we have used (3.14) and (3.15) as well
as the linearity of the map θ 7→ Ψθ. When passing from the third to the fourth line,
we have used the fact that the C1-norm of θ is bounded by a deterministic constant
depending on K.

In particular, by choosing p large enough and κ small enough, the rate λ1α can
be increased arbitrarily close to 1

2 − α̃.
In order to get a bound on the second quantity in I α̃2 we write(
E
∥∥Rθ(ū) −Rθ(uε)ε

∥∥p
B2α̃

[ε2,tε],α̃/2

) 1
p (2.30)

≤
(
E
∥∥Rθ(ū) −Rθ(ū)

ε

∥∥p
B2α̃

[ε2,tε],α̃/2

) 1
p

+
(
E
∥∥Rθ(ū)

ε −Rθ(uε)ε

∥∥p
B2α̃

[ε2,tε],α̃/2

) 1
p
,

where we use the notations Rθ and Rθε from Section 3.
The first term on the right hand side of (2.30) can be bounded directly using

Corollary 3.7. Actually, using the time regularity of θ(u) for all times in [0, %K,ε]
we even get a bound without blowup. Then for any

λ2 < α
α+ α? − 2α̃

α+ α?

and for p large enough we obtain(
E
∥∥Rθ(ū) −Rθ(ū)

ε

∥∥p
B2α̃

[ε2,tε],α̃/2

) 1
p
. ελ2

([
E
∥∥θ(ū)

∥∥p
Cα/2,α

[ε2,tε]

] 1
p

+
[
E
∥∥θ(ū)

∥∥p
Cαtε

] 1
p
)

. ελ2 .
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Here we have used the fact that the stopping time %K,ε is almost surely smaller
than the stopping time %Xε,K defined in (3.53) and than %X∞ defined in (3.76). Note
that as above by choosing κ small enough (and p large enough, which is already
implicit in the expression for λ2), the rate λ2 can be increased arbitrarily close to
1
2 − α̃.

For the remaining term in (2.30), using (3.78) we get for any λ3 <
1
2(α? − α̃)

and for p large enough that(
E
∥∥Rθ(ū)

ε −Rθ(uε)ε

∥∥p
B2α̃

[ε2,τ ],α̃/2

) 1
p

. tλ3

((
E ‖θ(ū)− θ(uε)‖pCα/2,α

[ε2,τ ]

) 1
p

+
(
E ‖θ(ū)− θ(uε)‖pC0

τ

) 1
p
)

. tλ3E α̃(t).

The bounds on I α̃3 and I α̃4 are provided in Section 4. Using Proposition 4.4 twice
we get

I α̃3 (t) =
(
E
∥∥ΦF (ū) − ΦF (uε)

ε

∥∥p
Cα̃/2,α̃tε

) 1
p

+
(
E
(

sup
0<s≤tε

s
α̃
2

∣∣ΦF (ū)(s)− ΦF (uε)
ε (s)

∣∣
C2α̃

)p) 1
p (2.31)

. t1−
α̃
2

(
E‖ū− uε‖pCα̃tε

) 1
p

+ ε1− α̃
2 .

Here we have used that, as a consequence of our definitions, the norms ‖ū‖Cα and
‖uε‖Cα are bounded by K before the stopping time %K,ε.

Then using Proposition 4.6 and Proposition 4.1 we get

I α̃4 (t) =
(
E
∥∥Υū −Υuε

ε

∥∥p
Cα̃/2,α̃tε

) 1
p

+
(
E
(

sup
0<s≤tε

s
α̃
2

∣∣Υū −Υuε
ε

∣∣
C2α̃

)p) 1
p

. ε1− α̃
2 +

(
E sup
t∈[0,T ]

∣∣∣DεXε(t, ·)− Λ Id
∣∣∣p
H−η

) 1
p

+ t1−
α̃
2

([
E
∥∥ū− uε∥∥pCα̃tε] 1

p
+
[
E
∥∥θ(ū)− θ(uε)

∥∥p
Cα̃tε

] 1
p
)

. εη−κ + t1−
α̃
2 E α̃(t).

We use Proposition 5.1 and Proposition 5.2, the main results of Section 5, to
bound I α̃5 . We get(

E
∥∥Ξū − Ξuεε

∥∥p
Cα̃/2,α̃

[ε2,tε]

) 1
p

+
(
E
∥∥Ξū − Ξuεε

∥∥p
Cα̃tε

) 1
p
.
(
EDpε

) 1
p t

1−2α̃−κ
2 + ε3α−1.

(2.32)
Using Proposition 5.1 again for γ = 2α̃, we get a similar bound for the remain-

ing term:[
E
(

sup
0<s≤tε

s−
α̃
2

∣∣Ξū(s)− Ξuεε (s)
∣∣
C2α̃

)p] 1
p
.
(
EDpε

) 1
p t

1−2α̃−κ
2

+ ε3α−1 + ε1−2α̃−κ.

(2.33)
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Note that we have used again that, thanks to the stopping time %K,ε, all the relevant
norms are bounded almost surely. In particular, the constants that are suppressed
in the . notation do depend on K. As above, in (2.32) and (2.33) we have used
the notation

Dε = ‖X −Xε‖Cα̃T + ‖X−Xε‖B2α̃
T

+ ‖ū− uε‖Cα̃tε + ‖θ(ū)− θ(uε)‖Cα̃
[ε2,tε]

+ ‖Rū −Ruε‖B2α̃
[ε2,tε],α̃/2

.

The quantity E[Dpε ]
1
p can be bounded by(

EDpε
) 1
p .

(
E‖X −Xε‖pCα̃t

) 1
p

+
(
E‖X−Xε‖pB2α̃

t

) 1
p

+
(
E‖ū− uε‖pCαtε

) 1
p

+
(
E‖Rū −Ruε‖

p

B2α̃
[ε2,tε],α̃/2

) 1
p

.
(
E‖X −Xε‖pCα̃t

) 1
p

+
(
E‖X−Xε‖pB2α̃

t

) 1
p

+ E α̃(t).

(2.34)

Here, we have used the fact that ū′ = θ(ū) and u′ε = θ(uε) as well as the bound

‖θ(ū)− θ(uε)‖Cα
[ε2,tε]

≤
∣∣θ∣∣C1‖ū− uε‖Cαtε +

∣∣θ∣∣C2‖ū‖Cαtε‖ū− uε‖C0
tε
.

For the second-order information Xε and X of our rough paths, Corollary 3.4
implies that for λ4 < 1− 2α̃ we get(

E
∥∥Xε −X

∥∥p
Cα/2,αt

) 1
p
. ε

λ4
2 and

(
E
∥∥Xε −X

∥∥p
B2α̃
t

)1/p
. ε

λ4
2 . (2.35)

So finally, combining the estimates (2.24), (2.25), (2.28), (2.29), (2.30), (2.32),
(2.33) and (2.35), we obtain

E α̃(t) . tγ̃E α̃(t) + εγ +
∣∣u0 − u0

ε

∣∣
Cα̃ . (2.36)

Here the exponents γ̃, γ > 0 are the minima of the corresponding exponents in the
above calculations. Note that γ depends on κ and p. and we have γ = γ(p, α̃, κ)
increases to 1

2 − α̃ as p ↑ ∞ and κ ↓ 0.
By choosing t = t∗ small enough we can absorb the first term on the right-hand

side of (2.36) into the left-hand side. Then we get for some constant C∗,

sup
0≤s≤t∗

E α̃(s) ≤ C∗εγ + C∗
∣∣u0 − u0

ε

∣∣
Cα̃ . (2.37)

Note that the specific values of t∗ and C∗ only depend on K and K̂.
We now iterate this argument taking ū(t∗) and uε(t∗) as new initial data. The

definition of the stopping times σuK and σuε in (2.20b) and (2.22b) ensure that for
t < %K,ε we have the bounds |ū(t)|Cα ≤ K and |uε(t)|Cα ≤ K, but in order to be
able to iterate the argument we need a bound in the slightly stronger Cα?-norm. For
this, we make use of the following trick: we know already that ū(t) is a controlled
rough path and that, for any pair x, y, we have the bound

δū(t;x, y) = θ
(
ū(t, x)

)
δX(t;x, y) +Rū(t;x, y).

Using this decomposition, we can conclude that in order to prove boundedness
of ū(t) in Cα? , it is sufficient to have bounds on θ(ū(t)) in C0, on X in Cα? as
well as onRuε(t) in Bα? . These norms are all bounded by deterministic constants
due to the definition of the stopping time. Hence we can conclude that for t ≤



21

%ε,K we have |uε(t∗)|Cα? ≤ sup|u|≤K+1 |θ(u)|K + K. Now if we choose K̂ =

sup|u|≤K+1 |θ(u)|K +K we can restart the process at t∗ and obtain the estimate

(
E
∥∥ū− uε∥∥pCα̃/2,α̃

[t∗+ε2,2t∗∧%K,ε]

)1/p
+
(
E
∥∥ū− uε∥∥pCα̃

[t∗,2t∗∧%K,ε]

)1/p

+
(
E
∥∥Rū −Ruε∥∥pB2α̃

[t∗+ε2,2t∗∧%K,ε],α̃/2

)1/p

≤ C∗εγ + C∗
(
E|ū(t∗ ∧ %K,ε)− uε(t∗ ∧ %K,ε)|pCα̃

)1/p
≤
(
C∗ + C2

∗
)
εγ + C2

∗ |u0 − u0
ε|Cα̃ ,

which can then be iterated recursively. Note that the values of C∗ and t∗ remain
constant throughout the recursion (because they only depend on K and K̂) so that
the final time T is reached within a finite number of steps.

The bound one obtains in this way not yet the desired result because of the
weight (s − kt∗)

α̃ for k = 1, 2, . . .. Note that in the definition of E α̃ the B2α̃-
norm of Rū may only blow up at ε2 but not at every multiple time kt∗ + ε2. For
ε small enough this issue can be avoided if we additionally restart the process at
times 2k+1

2 t∗, and then for every s take the better of the two bounds obtained in
this way. �

Proof of Theorem 1.5. In order to conclude Theorem 1.5 it is sufficient to show
that we have

lim
K↑∞

lim
ε↓0

P
[

sup
0≤s≤τ∗K

∥∥ū− uε∥∥C0 ≥ εγ̃
]

= 0. (2.38)

Indeed, then the sequence τε can be chosen as a suitable diagonal sequence.
Recall the definitions of the stopping times %K,ε and σK in (2.20) and (2.22).
In order to see 2.38 we write for any K̄ > K

P
[

sup
0≤s≤τ∗K

∥∥ū− uε∥∥C0 ≥ εγ
]
≤ P

[
sup

0≤s≤%∗
K̄,ε

∥∥ū− uε∥∥C0 ≥ εγ̃
]

(2.39)

+ P
[
%K̄,ε < σK̄

]
+ P

[
σK̄ < τK

]
.

Theorem 2.4 above and Chebyshev’s inequality directly imply that the first term
goes to zero. In order to obtain the optimal rate, we choose α̃ to be as small as
possible, i.e. just a bit larger than 1

3 . In particular, by choosing κ small enough we
can increase γ up to arbitrarily close to 1

6 .
According to the definition of the stopping times we have

P
[
%K̄,ε < σK̄

]
= P

[
‖X −Xε‖Cα?/2,α?%K̄,ε

≥ 1, or ‖X−Xε‖B2α
%K̄,ε
≥ 1, (2.40)

or sup
0≤t≤%K̄,ε

∣∣∣X(t)−Xε(t)
∣∣∣
C0
≥ εα? , or sup

0≤t≤%K̄,ε

∣∣Xε(t)|Dα?,ε ≥ K̄,

or sup
0≤t≤%K̄,ε

∣∣∣DεXε(t)− Λ Id
∣∣∣
H−η
≥ 1, or

∥∥ū− uε‖Cα/2,α
[ε2,%K̄,ε]

≥ 1,

or
∥∥ū− uε‖Cα%K̄,ε ≥ 1, or sup

ε2<t≤%K̄,ε
(t− ε2)

α
2 |Rū(t)−Ruε(t)|2α ≥ 1,
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or sup
0<t≤%K̄,ε

(t− ε2)
α̃
2 |Rū(t)−Ruε(t)|2α̃ ≥ 1

]
.

We have already provided all the bounds that imply that for any K̄ this probability
goes to zero. In fact, the bounds forX−Xε, |X−Xε|B2α

t
and

∣∣DεXε(t)−Λ Id
∣∣
H−η

are independent of K̄ and given in Corollary 3.4, Lemma 3.5 and Proposition 4.1.
The bounds for the remaining terms in (2.40) follow from applying Theorem 2.4

again, once with α̃ = α and once for arbitrary α̃. Note that it is crucial for this
argument, that we allow for the choice α̃ = α. In this case the convergence is very
slow, but this does not matter.

Finally, we write for the last term on the right-hand side of (2.39) that

P
[
σK̄ < τK

]
= P

[
‖X‖Cα?/2,α?τK

≥ K̄, or ‖X‖B2α
τK
≥ K̄, or

∥∥ū‖Cα/2,ατK

≥ K̄,

or sup
0<t≤τK

t
β
2 |Rū(t)|2α ≥ K̄, or sup

0<t≤τK
t
α̃
2 |Rū(t)|2α̃ ≥ K̄

]
.

It follows from the bounds in Corollary 3.4 that the probability of ‖X‖Cα?/2,α?τK

≥
K̄ and the probability of ‖X‖B2α

t
≥ K̄ go to zero as K̄ goes to ∞. The same

statement about the probabilities involving ū andRū follows from the global well-
posedness of the equation with bounded g and θ. The details of this calculation can
be found in the proof of Theorem 3.5 in [HW13] and will be omitted here.

This finishes the proof of our main result, Theorem 1.5. �

3. THE STOCHASTIC CONVOLUTION

In this section we provide the necessary bounds on the stochastic convolutions
Ψθ(u) and Ψ

θ(ū)
ε . We will adopt a slightly more general framework than the one

adopted in Section 2. Actually, we will fix an adapted L2[−π, π]-valued proces
(θ(t))t≥0 and consider the stochastic convolutions with the heat semigroup, i.e.

Ψθ
ε(t) =

∫ t

0
Sε(t−s) θ(s)Hε dW (s) and Ψθ(t) =

∫ t

0
S(t−s) θ(s) dW (s).

As in Section 2, the Gaussian case θ ≡ 1 will play a special role. We write

Xε(t) =

∫ t

−∞
Sε(t− s) ΠHε dW (s) and X(t) =

∫ t

−∞
S(t− s) ΠdW (s).

Here we have extended the cylindrical Brownian motion W to negative times in
order to ensure that X and Xε are stationary.

It will be useful to consider the Fourier expansion of Xε given by

Xε(t, x) =
1√
2π

∑
k∈Z?

∫ t

−∞
eikx e−k

2f(εk)(t−s) h(εk) dwk(s)

=
∑
k∈Z?

qkε ξ
k
ε (t) eikx .

(3.1)

Here the wk are Cn-valued two-sided Brownian motions (i.e. real and imaginary
part of every component are independent real-valued Brownian motions so that
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E|wik(t)|2 = |t|), which are independent up to the constraint wk = w̄−k that en-
sures that Xε is real-valued. Furthermore, we use the notation

qkε =
h(εk)

|k|
√

4πf(εk)
(3.2)

and the ξkε are centred stationary Cn-valued Gaussian processes, independent up to
ξkε = ξ̄−kε , so that for any t > 0,

E
(
ξkε (0)⊗ ξ−kε (t)

)
= Ktk Id, (3.3)

where

Ktk = e−f(εk)k2t. (3.4)

The series decomposition (3.1) can be used to define the iterated integral

Xε(t;x, y) =

∫ y

x

(
Xε(t, z)−Xε(t, x)

)
⊗ dzXε(t, z). (3.5)

In fact, for fixed t, x, y this integral can simply be defined as the limit in L2(Ω) as
N →∞ of the double series

XN
ε (t;x, y) =

∑
0<|k|,|l|≤N

ξkε (t)⊗ ξlε(t) qkε qlε
∫ y

x

(
eikz − eikx

)
il eilz dz

=
∑

0<|k|,|l|≤N

ξkε (t)⊗ ξlε(t) ei(k+l)x qkε q
l
ε Ik,l(y − x),

(3.6)

where

Ik,l(y) =

{
l

k+l

(
ei(k+l)y − 1

)
−
(
eily − 1

)
for k 6= −l,

ily −
(
eily − 1

)
for k = −l.

(3.7)

The regularity properties of Xε are discussed in Lemma 3.3. Note however, that the
regularity of Xε is not sufficient to give a pathwise argument for the existence of
(3.5). Also the series does not converge absolutely in L2(Ω) so that the symmetric
choice of approximation matters. We will make use of some cancellation in Lemma
3.3. Let us point out that the iterated integrals Xε satisfy the consistency relation
(A.3), and that for the symmetric part X+

ε := 1
2

(
Xε + X∗ε

)
we have

X+
ε (t;x, y) =

1

2

(
Xε(t, y)−Xε(t, x)

)
⊗
(
Xε(t, y)−Xε(t, x)

)
. (3.8)

These relations can easily be checked for any N and then follow by passing to the
limit. The regularity results given in Lemma 3.3 will then imply that for every t
the pair (Xε(t, ·),Xε(t; ·, ·)) is indeed a geometric rough path in x in the sense of
definition A.1.

A crucial tool to derive the moment estimates for Xε will be the equivalence
of moments for random variables in a given Wiener chaos, see Lemma B.4. The
decomposition (3.6) shows that Xε is in the second Wiener chaos. Therefore,
Nelson’s estimate implies that we can estimate all moments of Xε in terms of the
second moments.

Note that our definition of Xε coincides with the canonical rough path lift of a
Gaussian process discussed in [FV10, Ch. 15] and also used in [Hai11, HW13].
We prefer to work with the Fourier decomposition as it gives a direct way to prove
moment bounds and avoids the notion of 2-dimensional variation of the covariance,
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which seems a bit cumbersome in the present context. (See however [FGGR12] for
related calculations involving the two dimensional variation.)

A key step in the construction of solutions to (1.1) in [HW13] was to show that
the process Ψθ(t, ·) is controlled by X(t, ·) as soon as θ has a certain regularity. Its
derivative process is then given by θ(t, ·).

We will prove a similar statement for Ψθ
ε and derive bounds that are uniform in

ε. For a given θ denote by Rθε the remainder in the rough path decomposition of
Ψθ
ε with respect to Xε, i.e.

Rθε(t;x, y) =
(
Ψθ
ε(t, y)−Ψθ

ε(t, x)
)
− θ(t, x)

(
Xε(t, y)−Xε(t, x)

)
(3.9)

and

Rθ(t;x, y) =
(
Ψθ(t, y)−Ψθ(t, x)

)
− θ(t, x)

(
X(t, y)−X(t, x)

)
. (3.10)

The bounds on the spatial regularity of Rθε are provided in Lemma 3.6. A key
tool to derive these a priori bounds is provided by a higher-dimensional version of
the Garsia-Rodemich-Rumsey Lemma that can be found in Lemma B.2.

For the bound on Ψθ
ε we will impose a regularity assumption on θ. For any

stopping time τ recall the definition of the parabolic α-Hölder norm in (1.15).

Lemma 3.1. Let α ∈ (1
3 ,

1
2). Let α1, α2 > 0 and p ≥ 2 satisfy

α1 <
λ1

4
− 1

p
, α2 <

λ2

2
− 1

p
(3.11)

for some λ1, λ2 > 0 with λ1 + λ2 ≤ 1. Then for any stopping time τ ≤ T
E
∥∥Ψθ

ε

∥∥p
Cα1
τ (Cα2 )

. E‖θ‖pCτ . (3.12)

and

E
∥∥Ψθ

ε −Ψθ
∥∥p
Cα1
τ (Cα2 )

. ε(1−λ1−λ2)αp E‖θ‖pCατ . (3.13)

In our application of this lemma we shall need a small power of T appearing in
the right-hand side. This additional factor can be easily obtained by observing that
as Ψθ

ε(0) = 0 we have for any 0 < κ < α1∥∥Ψθ
ε

∥∥
Cα1−κ
τ (Cα2 )

≤ T κ
∥∥Ψθ

ε

∥∥
Cα1
τ (Cα2 )

.

Furthermore, we prefer to work with the space-time Hölder norms introduced in
(1.15), instead of working in spaces of functions that are Hölder in time taking
values in a Hölder space. To this end we observe that

‖Ψθ
ε‖Cα/2,ατ

≤
∥∥Ψθ

ε

∥∥
Cα/2τ (C0)

+
∥∥Ψθ

ε

∥∥
C0
τ (Cα)

.

In view of these remarks, the following result is an easy consequence of Lemma 3.1.

Corollary 3.2. Let α, α̃ ∈ (1
3 ,

1
2). Suppose that p satisfies

p >
6

1− 2α̃
.

Then for λ = 1− 2α̃− 6
p and for any stopping time τ ≤ T we have

E‖Ψθ
ε‖
p

Cα̃/2,α̃τ

. T λp/4 E‖θ‖pC0
τ

(3.14)

and

E‖Ψθ
ε −Ψθ‖p

Cα̃/2,α̃τ

. ελpα E‖θ‖pCατ . (3.15)



25

Proof of Lemma 3.1. We start by reducing the derivation of (3.12) and (3.13) to the
case where τ = T . In fact, for general τ we can define

θ̃(t) := θ(t ∧ τ) and Ψ̃θ
ε :=

∫ t

0
Sε(t− s) θ̃(s)Hε dWs.

Observing that Ψ̃θ
ε = Ψθ

ε for t ≤ τ we almost surely have the estimates∥∥Ψθ
ε

∥∥
Cα1
τ (Cα2 )

≤
∥∥Ψ̃θ

ε

∥∥
Cα1
T (Cα2 )

and
∥∥Ψθ

ε−Ψθ
∥∥
Cα1
τ (Cα2 )

≤
∥∥Ψ̃θ

ε−Ψ̃θ
∥∥
Cα1
T (Cα2 )

.

On the other hand we also have the almost sure identities

‖θ̃‖C0
T

= ‖θ‖C0
τ

and ‖θ̃‖C0
T

= ‖θ‖Cατ .

Hence the estimates (3.12) and (3.13) for general τ follow as soon as we have
established them for τ = T . We will make this assumption for the rest of the
proof.

Lemma B.2 applied to F = Ψθ
ε will imply the desired bound (3.12) as soon as

we have established the following inequalities

E
∣∣Ψθ

ε(t1, x)−Ψθ
ε(t2, x)

∣∣p . E‖θ‖pC0
T

(t1 − t2)
p
4 , (3.16a)

E
∣∣Ψθ

ε(t, x1)−Ψθ
ε(t, x2)

∣∣p . E‖θ‖pC0
T
|x1 − x2|

p
2 , (3.16b)

E
∣∣Ψθ

ε(t, x)
∣∣p . E‖θ‖pC0

T
. (3.16c)

Then Lemma B.2, applied for F = Ψθ
ε−Ψθ implies (3.13) as soon as we establish

in addition that
E
∣∣Ψθ

ε(t, x)−Ψθ(t, x)
∣∣p . E‖θ‖pCαT ε

α′p (3.16d)

for any α′ < α. We state (3.16a) and (3.16b) only for Ψθ
ε noting that Ψθ is included

as the special case ε = 0.
To see (3.16a) we can write for t1 ≥ t2,

Ψθ
ε(t1, x)−Ψθ

ε(t2, x)

=

∫ t2

0

∫ π

−π
Hε

( (
pεt1−s(x− ·)− p

ε
t2−s(x− ·)

)
θ(s, ·)

)
dW (s)

+

∫ t1

t2

∫ π

−π
Hε

(
pεt1−s(x− ·) θ(s, ·)

)
dW (s).

Here we recall the definitions of the heat kernel pεt in (2.9) and the smoothing
operator Hε in Assumption 1.4.

Using the Burkholder-Davis-Gundy inequality [KS91, Theorem 3.28] we get

E
∣∣Ψθ

ε(t1, x)−Ψθ
ε(t2, x)

∣∣p (3.17)

. E
(∫ t2

0

∫ π

−π

[
Hε

((
pεt1−s(x− ·)− p

ε
t2−s(x− ·)

)
θ(s, ·)

)
(y)
]2
ds dy

) p
2

+ E
(∫ t1

t2

∫ π

−π

[
Hε

(
pεt1−s(x− ·) θ(s, ·)

)
(y)
]2
ds dy

) p
2
.

Observing that due to the boundedness of h (see Assumption 1.4) the convolu-
tion with Hε is uniformly bounded as an operator on L2 we can bound the first
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expectation on the right-hand side of (3.17) by a constant times

E‖θ‖pC0
T

(∫ t2

0

∫ π

−π

(
pεt1−s(x− y)− pεt2−s(x− y)

)2
ds dy

) p
2

. (3.18)

Using Parseval’s identity the double integral in (3.18) can be bounded by∑
k∈Z

(
e−k

2f(εk) (t1−t2) − 1
)2
∫ t2

0
e−2k2f(εk) (t2−s)ds

.
∑
k∈Z?

(
k2f(εk) (t1 − t2) ∧ 1

)2 1

k2f(εk)

.
∑
k∈Z?

(t1 − t2) ∧ 1

k2f(εk)

.
∑

|k|≤(t1−t2)−1/2

(t1 − t2) +
∑

|k|>(t1−t2)−1/2

1

k2
. (t1 − t2)

1
2 .

(3.19)

Here in the second inequality we have used that |a|2 ≤ |a| whenever |a| ≤ 1, and
in the third inequality we used the assumption that f is bounded from below (see
Assumption 1.1).

The second integral on the right-hand side of (3.17) can be bounded in a similar
way by

E
(∫ t1

t2

∫ π

−π

(
Hε

(
pεt1−s(x− ·) θ(s, ·)

)
(y)
)2
ds dy

) p
2

. E‖θ‖pC0
T

(∫ t1

t2

∫ π

−π
pεt1−s(x− y)2 ds dz

) p
2
.

To bound the integral we calculate∫ t1

t2

∫ π

−π
pεt1−s(x− y)2 ds dy =

∑
k∈Z

∫ t1

t2

e−2k2f(εk) (t1−s) ds

.
∑
k∈Z?

k2f(εk) (t1 − t2) ∧ 1

k2f(εk)
+ (t1 − t2)

. (t1 − t2)
1
2 .

This finishes the proof of (3.16a).
Using the Burkholder-Davis-Gundy inequality and the uniform L2-boundedness

of the convolution withHε in the same way as before, the derivation of (3.16b) can
be reduced to showing that∫ t

0

∫ π

−π

(
pεt−s(x1 − y)− pεt−s(x2 − y)

)2
dy ds .

∣∣x1 − x2

∣∣. (3.20)

To prove the latter bound, we estimate∫ t

0

∫ π

−π

(
pεt−s(x1 − z)− pεt−s(x2 − z)

)2
dy ds

=
∑
k∈Z?

∣∣eik(x2−x1) − 1
∣∣2 ∫ t

0
e−k

2f(εk)(t−s) ds
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.
∑
k∈Z?

(
k|x1 − x2| ∧ 1

)2 1

k2f(εk)

.
∑

k≤|x1−x2|−1

|x1 − x2|2 +
∑

k>|x1−x2|−1

1

k2
. |x1 − x2|.

This shows (3.16b).
The bound (3.16c) follows immediataly, by using the Burkholder-Davis-Gundy

inequality in the same way as above.
In order to obtain (3.16d) we write

Ψθ
ε(t, x)−Ψθ(t, x) (3.21)

=

∫ t

0

∫ π

−π
Hε

((
pεt−s(x− ·)− pt−s(x− ·)

)
θ(s, ·)

)
(y) dW (s, y)

+

∫ t

0

∫ π

−π

(
Id−Hε

) (
pt−s(x, ·) θ(s, ·)

)
(y) dW (s, y).

The first term on the right-hand side of (3.21) can be treated as before. Up to a
constant its p-th moment is bounded by

E‖θ‖pC0
T

(∑
k∈Z

∫ t

0

(
e−(t−s)k2f(εk) − e−(t−s)k2

)2
ds
) p

2
. (3.22)

To get a bound on (3.22) we write∑
k∈Z

∫ t

0

(
e−(t−s)k2f(εk) − e−(t−s)k2

)2
ds

=
∑
k∈Z?

∫ t

0
e−2k2cf s

(
e−k

2(f(εk)−cf )s − e−k2(1−cf )s
)2
ds

≤
∑
k∈Z?

∫ t

0
e−2k2cf s

(
1 ∧ sk2|f(εk)− 1|

)2
ds .

(3.23)

Recall that the constant cf is defined in Assumption 1.1. Using Assumption 1.1
on f once more, one can see that for |εk| < δ we have

1 ∧ sk2|f(εk)− 1| . 1 ∧ |sk2εk|.
Hence, up to a constant the sum in (3.23) can then be bounded by∑

0<|k|≤δε−1

∫ t

0
e−2k2cf s s2 k4 (ε2k2) ds+

∑
δε−1<|k|

∫ t

0
e−2k2cf s ds . ε.

Finally, to treat the second term in (3.21) we need to impose a stronger regularity
assumption on θ. We have the estimate∣∣θ(s, ·) pt−s(x− ·)∣∣Hα′ .

∣∣θ(s, ·) ∣∣Cα ∣∣pt−s(x− ·)∣∣Hα (3.24)

which holds for every α′ < α. In fact, to see (3.24) write∫ π

−π

∫ π

−π

∣∣θ pt−s(x1)− θ pt−s(x2)
∣∣2

|x1 − x2|2α′+1
dx1 dx2

. sup
x
|θ(x)|2 |pt−s|2Hα′ + |θ|2Cα

∫ π

−π

∫ π

−π

|x1 − x2|2α pt−s(x2)2

|x1 − x2|2α′+1
dx1 dx2
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. sup
x
|θ(x)|2 |pt−s|2Hα′ + |θ|2Cα |pt−s|L2 .

Then the Burkholder-Davis-Gundy inequality yields

E
∣∣∣∣ ∫ t

0

∫ π

−π

((
Id−Hε

)
pt−s(x− ·) θ(s, ·)

)
(y) dW (s, y)

∣∣∣∣p (3.25)

. E
(

sup
s∈[0,T ]

∣∣θ(s, ·)∣∣Cα)p(∫ t

0
|pt−s|2Hα

∣∣ Id−Hε
∣∣2
Hα′→L2 ds

) p
2
.

Now for any α ∈ (0, 1)

|pt(x− ·)|2Hα h
∑
k∈Z

(
1 + |k|2α

)
e−2tk2

. t−
1
2
−α.

On the other hand∣∣ Id−Hε
∣∣
Hα′→L2 h sup

k∈Z

1− h(ε|k|)
1 + |k|α′

≤ εα′ sup
r∈R

1− h(|r|)
εα′ + |r|α′

. εα
′
,

due to Assumption 1.4 on h. By assumption α < 1
2 . Hence the right-hand side of

(3.25) is integrable and we arrive at (3.16d). This finishes the proof. �

As a next step we give bounds on the approximation of the Gaussian rough path
(X,X).

Lemma 3.3. For any α ∈ (1
3 ,

1
2 ], any ε ≥ 0 and any t, the pair

(
Xε(t, ·),Xε(t; ·)

)
is a geometric α-rough path in the sense of Definition A.1.

Furthermore, let p ∈ [1,∞) and let α1, α2 > 0 satisfy

α1 <
λ1

4
, α2 <

λ2

2
(3.26)

for some λ1, λ2 > 0 with λ1 + λ2 ≤ 1. Then we have for any ε ≥ 0

E
∥∥Xε

∥∥p
Cα1
T (Cα2 )

. 1, (3.27)

E
∥∥Xε −X

∥∥p
Cα1
T (Cα2 )

. ε
1
2

(1−λ1−λ2)p, (3.28)

and

E
∥∥Xε

∥∥p
Cα1
T (B2α2 )

. 1, (3.29)

E
∥∥Xε −X

∥∥p
Cα1
T (B2α2 )

. ε
1
2

(1−λ1−λ2)p . (3.30)

We will need uniform in time estimates on Xε and we will not make use of the
Hölder in time regularity provided by Lemma 3.3. Therefore, we will actually use
the following version of Lemma 3.3.

Corollary 3.4. Let α ∈ (1
3 ,

1
2). Suppose that λ < 1− 2α. Then for any p ≥ 1 and

T > 0 we have

E‖Xε‖pCα/2,αT

.T
λp
4 , (3.31)

E‖Xε −X‖pCα/2,αT

. ε
λp
2 . (3.32)

Similarly, we get

E
∥∥Xε

∥∥p
B2α
T
. T

λp
4 , (3.33)
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E
∥∥Xε −X

∥∥p
B2α
T
. ε

λp
2 . (3.34)

Proof of Lemma 3.3. By the monotonicity of Lp-norms, we may assume without
loss of generality that (3.26) is replaced by (3.11). The bounds (3.27) and (3.28)
on Xε can be proved as in Lemma 3.1 for the special case of θ = 1. The only
difference is that some integrals over [0, t] have to be replaced by integrals over
(−∞, t] and the zero Fourier mode has to be removed, but this does not change the
bounds. The consistency relation (A.3) and the symmetry condition were already
observed above (see (3.8) and above). Thus it only remains to show (3.29) and
(3.30).

To apply Lemma B.2 to the Xε we need to prove the following bounds: For
every γ < 1 we have

E
∣∣Xε(t;x, y)−Xε(s;x, y)

∣∣p . |t− s| γp4 , (3.35)

E
∣∣Xε(t;x, y)

∣∣p . |x− y|γp, (3.36)

E
∣∣δXε(t)

∣∣p
[x,y]
. |x− y|γp, (3.37)

E
∣∣Xε(t;x, y)−X(t;x, y)

∣∣p . ε γp2 . (3.38)

The bound (3.37) follows directly from the consistency relation (A.3) as for all
x ≤ y

E
∣∣δXε(t)

∣∣p
[x,y]

= E
(

sup
x≤z1<z2<z3≤y

∣∣δXε(t; z1, z2)⊗ δXε(t, z2, z3)
∣∣)p

. |x− y|γ E
∣∣Xε(t)

∣∣2p
γ
2
.

(3.39)

Lemma 3.1 implies that the expectation on the right-hand side of (3.39) is finite,
which shows (3.37).

Due to the equivalence of all moments in the second Wiener chaos (see Lemma B.4)
it is sufficient to prove the bounds in the special case p = 2. To derive (3.36) we
write

Xε(t;x, y) =
∑
k,l∈Z?

ξkε (t)⊗ ξlε(t) ei(k+l)x qkε q
l
ε Ik,l(y − x) .

Recall the definitions (3.2) for the qεk, (3.3) for the ξkε (t), and (3.7) for the Ik,l.
This sum is actually a slight abuse of notation because the sum may not converge
absolutely in L2(Ω). Hence as above in (3.6) it should be interpreted as the limit
as N →∞ of the symmetric approximations where the sum goes over all k, l with
absolute value bounded by N .

Then we can write

E
∣∣Xε(t;x, y)

∣∣2 =
∑

k,l,k̄,l̄∈Z?
E
[

tr(ξkε (t)⊗ ξlε(t))(ξ−l̄ε (t)⊗ ξ−k̄ε (t))
]
qkε q

l
ε q

k̄
ε q

l̄
ε

× Ik,l(y − x)I−k̄,−l̄(y − x) .

For the first term in the sum we get

E
[

tr (ξkε (t)⊗ ξlε(t))(ξ−l̄ε (t)⊗ ξ−k̄ε (t))
]

= n2 δk,k̄ δl,l̄ + n δk,l̄ δl,k̄ + n δk,−l δk̄,−l̄ ,
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and hence we can conclude that

E
∣∣Xε(t;x, y)

∣∣2 = n2
∑
k,l∈Z?

(
qkε
)2 (

qlε
)2
Ik,l(y − x)I−k,−l(y − x)

+ n
∑
k,l∈Z?

(
qkε
)2 (

qlε
)2
Ik,l(y − x)I−l,−k(y − x)

+ n
( ∑
k∈Z?

(
qkε
)2
Ik,−k(y − x)

)2
.

(3.40)

We treat the off-diagonal terms first. If k 6= −l the expression (3.7) shows that
we have the bound

|Ik,l(y)| ≤ |kl||y|2 ∧
(∣∣∣k − l
k + l

∣∣∣+ 1
)
.
(∣∣∣k − l
k + l

∣∣∣+ 1
)1−γ̃

|kl|γ̃ |y|2γ̃

for every γ̃ ∈ [0, 1]. We plug that into the right hand side of (3.40) and we get for
the terms involving only k 6= −l

n2
∣∣∣ ∑
k 6=−l∈Z?

(
qkε
)2 (

qlε
)2
Ik,l(y − x)I−k,−l(y − x)

∣∣∣
+ n

∣∣∣ ∑
k 6=−l∈Z?

(
qkε
)2 (

qlε
)2
Ik,l(y − x)I−l,−k(y − x)

∣∣∣
. |y|4γ̃

∑
k 6=−l∈Z?

|kl|2γ̃

l2k2

(∣∣∣k − l
k + l

∣∣∣+ 1
)2−2γ̃

.

The sums appearing in the last line are finite if γ̃ < 1
2 . In order to treat the diagonal

terms for which k = −l we recall that in this case

Ik,−k(y) = iky −
(
eiky − 1

)
. (3.41)

Then the diagonal terms in the first two lines of (3.40) can be treated directly with
the brutal bound |Ik,−k(y)| . |ky| which yields

n2
∣∣∣ ∑
k∈Z?

(
qkε
)4
Ik,−k(y − x)I−k,k(y − x)

∣∣∣
+ n

∣∣∣ ∑
k∈Z?

(
qkε
)4
Ik,−k(y − x)2

∣∣∣ . ∑
k∈Z?

1

k2
|y − x|2 . |y − x|2.

In order to treat the last sum we need to make use of a cancellation. In fact, we can
write for any N∑

0<|k|≤N

(
qkε
)2
Ik,−k(y − x) (3.42)

=
∑

0<|k|≤N

(
qkε
)2
ik(y − x) +

∑
0<|k|≤N

(
qkε
)2 [

eik(y−x) − 1
]
.

Now the summands in the first sum are antisymmetric with respect to changing the
sign of k. Hence this sum vanishes identically for any N and also in the limit. For
the second term we use the easy bound

∣∣eik(y−x)− 1
∣∣ . |k(y−x)|γ̃ for any γ̃ ≤ 1

to obtain ( ∑
k∈Z?

(
qkε
)2 (

eik(y−x) − 1
))2
. |y − x|2γ̃

( ∑
k∈Z?
|k|γ̃−2

)2
.
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The sum converges for any γ̃ < 1. This establishes (3.36).
To derive the bound (3.35) on the time regularity of Xε we write for t > 0

Xε(t;x, y)−Xε(0;x, y) (3.43)

=
∑
k,l∈Z?

[
ξkε (t)⊗ ξlε(t)− ξkε (0)⊗ ξlε(0)

]
qkε q

l
ε e

i(k+l)xIk,l(y − x).

We rewrite the term involving the Gaussian random variables as

ξkε (t)⊗ ξlε(t)− ξkε (0)⊗ ξlε(0) = ξkε (t)⊗ δ0,tξ
l
ε + δ0,tξ

k
ε ⊗ ξlε(0), (3.44)

where δ0,tξ
l
ε := ξlε(t) − ξlε(0). Then using (3.3) we get for the first term on the

right hand side

E tr
(
ξkε (t)⊗ δ0,tξ

l
ε

)(
δ0,tξ

−l̄
ε ⊗ ξ−k̄ε (t)

)
= n2δk,k̄δl,l̄

(
2− 2Ktl

)
+ nδk,l̄δl,k̄

(
1−Ktk

) (
1−Ktl

)
+ nδk,−lδk̄,−l̄

(
1−Ktk

) (
1−Ktk̄

)
. (3.45)

Then we observe that for any k we have∣∣1−Ktk∣∣ .1 ∧ f(εk)k2(t). (3.46)

Plugging this into (3.45) yields∣∣E tr
(
ξkε (t)⊗ δ0,tξ

l
ε

)(
δ0,tξ

−l̄
ε ⊗ ξ−k̄ε (t)

)∣∣ (3.47)

.
(
δk,k̄δl,l̄ + δk,l̄δl,k̄

)(
1 ∧ f(εl)l2t

)
+ δk,−lδk̄,−l̄

(
1−Ktk

) (
1−Ktk̄

)
.

Performing the same calculation for the second term on the right hand side of
(3.44) we obtain.∣∣E tr

(
δ0,tξ

k
ε ⊗ ξlε(0)

)(
ξ−l̄ε (0)⊗ δ0,tξ

−k̄
ε (t)

)∣∣ (3.48)

.
(
δk,k̄δl,l̄ + δk,l̄δl,k̄

)(
1 ∧ f(εk)k2(t− s)

)
+ δk,−lδk̄,−l̄

(
1−Ktk

) (
1−Ktk̄

)
.

We treat the off-diagonal terms for which k 6= −l first. In this case, as above,
we use the simple bound |Ik,l| .

∣∣(k− l)(k+ l)−1
∣∣+1. Summing over those terms

we obtain∑
k 6=−l∈Z?
k̄ 6=−l̄∈Z?

E tr
(
ξkε (t)⊗ ξlε(t)− ξkε (0)⊗ ξlε(0)

)(
ξ−l̄ε (t)⊗ ξ−k̄ε (t)− ξ−l̄ε (0)⊗ ξ−k̄ε (0)

)
× qkε qlεqk̄ε q l̄ε ei(k+l)xei(k̄+l̄)xIk,l(y − x)Ik̄,l̄(y − x)

.
∑
k,l∈Z?

1

k2

1

l2

(
1 ∧ l2t

)(∣∣∣k − l
k + l

∣∣∣+ 1
)2
. |t|

1
2 .

For the diagonal terms k = −l we make use of the same cancellation as in (3.42).
More precisely, using (3.41) we write∑
k,k̄∈Z?

E tr
(
ξkε (t)⊗ ξ−kε (t)− ξkε (0)⊗ ξ−kε (0)

)(
ξk̄ε (t)⊗ ξ−k̄ε (t)− ξk̄ε (0)⊗ ξ−k̄ε (0)

)
×
(
qkε
)2 (

qk̄ε
)2
Ik,−k(y − x)Ik̄,−k̄(y − x)

.
∑
k,∈Z?

1

k4

(
1 ∧ k2t

)
|ky|+

( ∑
k∈Z?

(
1−Ktk

)
q2
kIk,−k

)2
. (3.49)
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Here the first term on the right hand side corresponds to the first terms on the right
hand side of (3.47) and of (3.48). Here we have again made use of the estimate
Ik,−k . |ky|. To treat the remaining two terms on the right hand side of (3.49) we
observe in the same way as above in (3.42) that the terms corresponding to iky in
(3.41) cancel. Then bounding the other term by 1 it is easy to see that the whole
expression on the right hand side of (3.49) is bounded by |t|

1
2 up to a constant. This

establishes (3.35).
In order to derive the bound on the ε-differences we write for any t, x, y

Xε(t;x, y)−X(t;x, y) (3.50)

=
∑
k,l∈Z?

[
qkε ξ

k
ε (t)⊗

(
qlεξ

l
ε(t)− ql0ξl0(t)

)
+
(
qkε ξ

k
ε (t)− qk0ξk0 (t)

)
⊗ ql0ξl0(t)

]
ei(k+l)x Ik,l(y − x).

Here we have put the subscript 0 to emphasise the limit case ε = 0. We set for any
ε, ε̄ ≥ 0

Rkε,ε̄ := E
(
qkε ξ

k
ε̄ (t)q−kε ξ−kε̄ (t)

)
=

h(εk)h(ε̄k)

k2
(
f(εk) + f(ε̄k)

) ,
where we have made use of the definitions (3.6) of qkε and ξkε . In particular, using
the assumptions 1.1 and 1.4 on f and h we get for any k and any ε, ε̄ ≥ 0 that∣∣Rkε,ε∣∣ . |k|−2,∣∣Rkε,ε −Rkε,ε̄∣∣ . |k|−2

(
|ε− ε̄||k| ∧ 1

)
,∣∣Rkε,ε +Rkε̄,ε̄ − 2Rkε,ε̄

∣∣ . |k|−2
(
|ε− ε̄||k| ∧ 1

)
.

Then a calculations which is very similar to the proof for the time regularity shows
that one gets

E
∣∣Xε(t;x, y)−X(t;x, y)

∣∣2
.
∑
k,l∈Z?

1

k2

1

l2

(
1 ∧ |lε|

)(∣∣∣k − l
k + l

∣∣∣+ 1
)2

+
∑
k∈Z?

1

k4
ε|k||ky|

+
( ∑
k∈Z?

(
Rkε,ε −Rkε,0

)
Ik,−k

)2
+
( ∑
k∈Z?

(
Rkε,0 −Rk0,0

)
Ik,−k

)2
. ε.

This finishes the proof for (3.38). �

In the proof of Corollary 3.7 we will need another bound on Xε. For the usual
heat semigroup S(t), a bound on the Hölder norm |X|Cα is enough to conclude that
the map t 7→ S(t)X is α

2 -Hölder continuous taking values in C0. Unfortunately,
as discussed for example in Lemma 6.7, the same statement is not true for the
approximate heat semigroup Sε. We thus define a norm that ensures this property.
For X ∈ C0 we set

|X|Dα,ε := sup
0≤r1<r2≤1

|r2 − r1|−
α
2 |Sε(r2)X − Sε(r1)X|C0 ∈ [0,+∞]. (3.51)

Note that r1 = 0 is allowed inside the supremum. For any k ∈ Zε = {k ∈ Z? :
f(εk) <∞}, we then have

|eikx|Dα,ε h |k|αf(εk)
α
2 .
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We also denote byDα,ε the closure of the vector space generated by {eikx}k∈Zε un-
der this norm. Note that this space is finite dimensional (with dimension depending
on ε) if f is equal to∞ outside a compact domain.

We now establish bounds for Xε measured with respect to | · |Dα,ε .

Lemma 3.5. For any ε ≥ 0 and for any α < 1
2 the process (Xε(t))0≤t≤T is

continuous with values in Dα,ε, and for any p <∞ we have that

E
(

sup
0≤t≤T

|Xε(t)|pDα,ε
)
. 1 ,

uniformly over ε ∈ (0, 1].

Proof. We fix 0 ≤ s1 < s2 ≤ T and an 0 < r1 < r2 ≤ 1. Then, using Hölder’s
inequality we get for any 0 < λ < 1 and any p > 0 that

E
∣∣∣(Sε(r1)− Sε(r2)

)(
Xε(s2)−Xε(s1)

)∣∣∣p
C0

.
[

max
t∈{s1,s2}

E
∣∣(Sε(r1)− Sε(r2))Xε(t)

∣∣p
C0

]λ
×
[

max
r′∈{r1,r2}

E
∣∣∣Sε(r′)(Xε(s2)−Xε(s1)

)∣∣∣p
C0

]1−λ
.

The second factor can be bounded easily using the regularity of Xε (see (3.27))
and the fact that |Sε(r)|Cκ→C0 . 1 for any κ > 0 by Lemma 6.4. In this way we
obtain for any κ > 0 that

max
r′∈{r1,r2}

E
∣∣∣Sε(r′)(Xε(s2)−Xε(s1)

)∣∣∣p
C0
. |s2 − s1|

p
4
−κ.

To treat the first term, for any x ∈ [−π, π] a straightforward calculation yields

E
∣∣(Sε(r1)− Sε(r2)

)
Xε(t)(x)

∣∣2
.
∑
k∈Zε

∫ t

−∞

(
e−k

2f(εk)(t+r1−s) − e−k2f(εk)(t+r2−s)
)2
ds

.
∑
k∈Zε

(
1 ∧ f(εk)k2|r1 − r2|

)2 1

k2f(εk)
. |r1 − r2|

1
2 ,

uniformly over ε ∈ (0, 1]. Then an easy argument yields

E
∣∣δ((Sε(r1)− Sε(r2))Xε(t)

)
(x1, x2)

∣∣2 . |r1 − r2|
1
2 ∧ |x1 − x2|,

where δX(x1, x2) = X(x2) − X(x1). Hence, Kolmogorov’s criterion (see e.g.
Lemma B.3 applied to the Banach space R) together with the equivalence of Gauss-
ian moments (Lemma B.4) yields that for any κ > 0 we have

E
∣∣(Sε(r1)− Sε(r2)

)
Xε(t)

∣∣p
C0 . |r1 − r2|

p
4
−κ.

Hence, by choosing an appropriate λ (close to 1) and small values of κ we obtain
for any α < α′ < 1

2 and for a small κ′ > 0 that

E
∣∣∣(Sε(r1)− Sε(r2)

)(
Xε(s2)−Xε(s1)

)∣∣∣p
C0
. |r1 − r2|p

α′
2 |s2 − s1|pκ

′
,

so that applying Kolmogorov’s Criterion once more (in r) yields that

E
∣∣Xε(s2)−Xε(s1)

∣∣p
Dα,ε . |s2 − s1|κ

′
.
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Then using the fact that Xε(0) = 0 and applying Kolmogorov’s criterion B.3 once
more we obtain the desired bound. �

Finally, we give the necessary bounds on the remainder term Rθε . The derivation
of the uniform bounds requires more work than in the cases of Ψθ

ε or (Xε,Xε).
As in [HW13] the regularity of Ψθ

ε follows from the space-time regularity of θ.
Actually, formally one obtains

Rθε(t;x1, x2) =

∫ t

0

∫ π

−π

(
pεt−s(x2 − z)− pεt−s(x1 − z)

)(
θ(s, z)− θ(t, x1)

)
dW (s, z)

+ δx1,x2Sε(t)Xε(0) (3.52)

and a formal application of the Burkholder-Davis-Gundy inequality suggests that
the space-time regularity of θ can be used to deduce higher spatial regularity forRθε .
Unfortunately, this reasoning is not correct because the process (θ(s, z)−θ(t, x1))
is not adapted to the filtration generated by W since θ(t, x1) lies “in the future”. In
particular, the Burkholder-Davis-Gundy inequality cannot be applied directly. This
problem is overcome in Lemma 3.6 with a bootstrap argument.

The lack of time regularity of the process u near zero also causes a slight in-
convenience. Recall that in the application we have in mind we have θ = θ(uε).
We have seen in Subsections 2.2 and 2.3 that in general the process uε need not be
time continuous near 0. We only have the necessary “almost 1

4” Hölder regularity
for times t ≥ ε2. Hence we will only obtain the α

2 -regularity for times t ≥ ε with
a blowup for t ↓ ε2.

Recall the definition of the parabolic Hölder norms ‖ · ‖Cα/2,α
[s,t]

and ‖ · ‖Cα/2,αt
in

(1.14) and (1.15). Then for any K > 0 and for a 0 < α? <
1
2 we introduce the

stopping time

%X,α?ε,K = inf
{
t ≥ 0: ‖X‖Cα?/2,α?t

≥ K or ‖Xε −X‖Cα?/2,α?t
≥ 1
}
. (3.53)

Observe (recalling the definitions (2.20a) and (2.22a)) that %X,α?ε,K ≥ σXK ∧ %Xε
almost surely.

We start by showing that Rθε has the required spatial regularity, uniformly in ε.

Lemma 3.6. Suppose that α, α? ∈ (0, 1
2). Let τ be a stopping time that almost

surely satisfies

0 ≤ τ ≤ %X,α?ε,K ∧ T. (3.54)

For every 0 ≤ t ≤ T we set

θ̃(t) := θ(t ∧ τ),

Ψ̃θ
ε(t) :=

∫ t∧τ

0
Sε(t− r) θ̃(r)HεdW (r),

X̃ε(t) := 1{τ>0}

∫ t∧τ

−∞
Sε(t− r) ΠHεdW (r),

R̃θε(t;x, y) := δΨ̃θ
ε(t;x, y)− θ̃(t, x) δX̃ε(t;x, y).

(3.55)

Then for any p large enough, and for any

γ < α? + α− 1

p
−
√

1

2p
(1 + α− α?) , (3.56)
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the following bound holds true:

sup
ε2<t≤T

(t− ε2)αp/2 E
∣∣R̃θε(t)|pBγ . E ‖θ‖p

Cα/2,α
[ε2,τ ]

+ E ‖θ‖pC0
τ
. (3.57)

Proof. If τ = 0 the processes Ψ̃θ
ε(t), X̃ε(t), and R̃θε(t;x, y) are zero for all t ≥ 0.

Else, for times 0 ≤ t ≤ τ the processes θ̃, Ψ̃θ
ε, X̃ε, and R̃θε coincide with θ,Ψθ

ε, Xε,
and Rθε . For t > τ the processes Ψ̃θ

ε and X̃ε satisfy the identities Ψ̃θ
ε(t) = Sε(t −

τ)Ψθ
ε(τ) and X̃ε(t) = Sε(t − τ)Xε(τ). Recalling the regularity properties of the

approximated heat semigroup in Corollary 6.6, we obtain for any κ > 0,

sup
0≤s≤T

|Ψ̃θ
ε(s)|Cα?−κ . ‖Ψθ

ε‖Cα?τ and sup
0≤s≤T

|X̃ε(s)|Cα?−κ . ‖Xε‖Cα?τ .

(3.58)
We will fix such a small κ for the rest of the proof.

In particular, recalling the condition (3.54) on the stopping time τ we have the
almost sure estimate

sup
0≤s≤T

|X̃ε(s)|Cα?−κ . (K + 1) . 1 . (3.59)

After these preliminary considerations we are now ready to start the derivation
of the estimate (3.57). We first observe that the definition of R̃θε as well as the
regularity results for Ψθ

ε (Lemma 3.1) together with (3.58) immediately imply that
for any p satisfying

p >
6

1− 2α?
,

we have

E
(

sup
0≤s≤T

∣∣R̃θε(s)∣∣Bα?−κ)p . E
∥∥Ψθ

ε

∥∥p
Cα?τ

+ E
(
‖θ‖C0

τ

∥∥Xε

∥∥
Cα?τ

)p
. E

∥∥θ‖pC0
τ

, (3.60)

where in the second line we have made use of the deterministic a priori bound
(3.59).

The idea is to use this (very weak) a priori information on the regularity of R̃θε
as the starting point for a bootstrap argument. For any ε2 < s < t ≤ T and for
x1, x2 ∈ [−π, π] we define the following three quantities

R1(s, t;x1, x2) :=
(
θ̃(t, x1)− θ̃(s, x1)

)
δX̃ε(t;x1, x2),

R2(s, t;x1, x2) := δ

[ ∫ t∧τ

s∧τ
Sε(t− r) θ̃(r)Hε dW (r)

]
(x1, x2)

− θ̃(s, x1) δ

[ ∫ t∧τ

s∧τ
Sε(t− r)Hε dW (r)

]
(x1, x2),

R3(s, t;x1, x2) := δ

[ ∫ s∧τ

0
Sε(t− r) θ̃(r)Hε dW (r)

]
(x1, x2)

− θ̃(s, x1)δ

[ ∫ s∧τ

−∞
Sε(t− r)Hε dW (r)

]
(x1, x2).

Note that for all s, t, x1, x2 we have the identity

R̃θε(t;x1, x2) = −R1(s, t;x1, x2) +R2(s, t;x1, x2) +R3(s, t;x1, x2).

We will now bound the Ri individually.
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A bound on R1 can be established easily. We get almost surely∣∣R1(s, t;x1, x2)
∣∣ . ‖θ‖Cα/2,α

[s,τ ]

|x1 − x2|α?−κ|t− s|
α
2 , (3.61)

where we have again made use of the deterministic bound (3.59) on
∥∥X̃‖Cα?−κT

.
To bound R2, we rewrite it as

R2(s, t;x1, x2) =

∫ t∧τ

s∧τ

∫ π

−π

(
pεt−r(x2 − y)− pεt−r(x1 − y)

)
(
θ̃(r, y)− θ̃(s, x1)

)
Hε dW (r, y).

This time the integrand is adapted, so we can apply the Burkholder-Davis-Gundy
inequality. Combining this with the fact that Hε is a contraction on L2implies for
p > 1

E|R2(s, t;x1, x2)|p

. E
(∫ t∧τ

s∧τ

∫ π

−π

(
pεt−r(x1 − y)− pεt−r(x2 − y)

)2(
θ̃(r, y)− θ̃(s, x1)

)2
dy dr

) p
2

. E‖θ‖p
Cα/2,α

[s,τ ]

(∫ t

s

∫ π

−π

(
pεt−r(x1 − y)− pεt−r(x2 − y)

)2
×
(
|s− r|α + |y − x1|2α

)
dy dr

) p
2

. E‖θ‖p
Cα/2,α

[s,τ ]

|x1 − x2|
p
2 |t− s|

αp
2 .

(3.62)

Here we used the trivial bound |s− r| ≤ |t− s| for r ∈ [s, t] and the bound (3.20)
for the term involving |s− r|. The calculations for the term involving |y− x1| can
be found in Lemma 6.1 below.

For the third term we write

R3(s, t;x1, x2) =

∫ π

−π

(
pεt−s(x2 − z)− pεt−s(x1 − z)

)
Ψ̃θ
ε(s, z) dz (3.63)

− θ̃(s, x1)

∫ π

−π

(
pεt−s(x2 − z)− pεt−s(x1 − z)

)
X̃ε(s, z) dz.

We rewrite the first integral as∫ π

−π

(
pεt−s(x2 − z)− pεt−s(x1 − z)

)
Ψ̃θ
ε(s, z) dz

=

∫ π

−π

(∫ x2

x1

(pεt−s)
′(λ− z) dλ

)
Ψ̃θ
ε(s, z) dz

=

∫ π

−π

∫ x2

x1

(pεt−s)
′(λ− z)

(
Ψ̃θ
ε(s, z)− Ψ̃θ

ε(s, x1)
)
dλ dz .

(3.64)

Here in the last line we have made use of the identity∫ π

−π
(pεt−s)

′(λ− z) Ψ̃θ
ε(s, x1) dz = 0 ,

which holds for every λ due to the periodicity of pεt .
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We can rewrite the second integral in (3.63) in the same way. Hence, inserting
this back into (3.63) we obtain

R3(s, t;x1, x2) = −
∫ π

−π

∫ x2

x1

(pεt−s)
′(λ− z) R̃θε(s;x1, z) dλ dz .

In particular, we can conclude that as soon as
∣∣R̃θε(s)∣∣Bγ is finite for some 0 < γ <

1, we have∣∣R3(s, t;x1, x2)
∣∣ ≤ ∣∣R̃θε(s)∣∣Bγ ∫ π

−π

∫ x2

x1

∣∣(pεt−s)′(λ−z)∣∣ |x1−z|γdλ dz . (3.65)

For the integral in the last line of (3.65) we get∫ π

−π

∫ x2

x1

∣∣(pεt−s)′(λ− z)∣∣ |x1 − z|γdλ dz

.
∫ π

−π

∫ x2

x1

∣∣(pεt−s)′(λ− z)∣∣ (|x1 − λ|γ + |λ− z|γ
)
dλ dz

. |x1 − x2|1+γ

∫ π

−π

∣∣(pεt−s)′(z)∣∣ dz + |x1 − x2|
∫ π

−π

∣∣(pεt−s)′(z) ∣∣ |z|γ dz.
(3.66)

Plugging the bounds obtained in Lemma 6.1 into the right-hand side of (3.66), we
obtain∣∣R3(s, t;x1, x2)

∣∣ ≤ ∣∣R̃θε(s)∣∣Bγ(|x1 − x2|1+γ(t− s)−
1
2

∣∣ log(t− s)
∣∣

+ |x1 − x2|(t− s)
−1+γ

2

)
.

Now for fixed x1, x2 and t and s > 0 we can summarise the above calculations as
follows. We have(

E
∣∣R̃θε(t;x1, x2)

∣∣p) 1
p
.
(
E
∣∣∣R1(s, t;x1, x2)

∣∣p) 1
p

+
(
E
∣∣R2(s, t;x1, x2)

∣∣p) 1
p

+
(
E
∣∣R3(s, t;x1, x2)

∣∣p) 1
p

.
(
E
∥∥θ∥∥p

Cα/2,α
[s,τ ]

) 1
p |x1 − x2|α?−κ |t− s|

α
2 +

(
E
∣∣R̃θε(s)∣∣pBγ) 1

p

×
(
|x1 − x2|1+γ(t− s)−

1
2

∣∣ log(t− s)
∣∣+ |x1 − x2|(t− s)

−1+γ
2

)
.

(3.67)

Recall that the bound (3.60) implies that all moments of the norm |R̃θε(s)|Bγ are
finite if we choose γ = α? − κ. Now we shall use this weak a priori knowledge
on the regularity of R̃θε as a starting point for a bootstrap argument based on the
estimate (3.67). Let us briefly outline the argument before going into details.

We fix a time t and x1, x2 and choose the time difference |t− s| = ∆ as |x1 −
x2|ν , where ν = ν(γ, α, α?) is chosen such that the first and the last term on the
right hand side of (3.67) scale in the same way. Plugging this into (3.67) yields an
improved bound for R̃θε , which can in turn be used as the right hand side of (3.67),
etc.

There are two obstacles that have to be overcome. On the one hand, (3.67)
is only a good estimate if we have control over the space-time regularity of θ on
[s, t]. As this is only the case for s > ε2 we treat the case where ∆ is too large in
a brutal way causing a blowup like (t− ε2)−α/2. On the other hand, (3.67) yields
an estimate on expectations of R̃θε(t, x1, x2) for fixed values of t, x1 and x2. But in
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order to plug that back into the right hand side of (3.67) we need to turn this into an
estimate on the expectation of a spatial supremum. We move the supremum under
the expectation by an application of Gubinelli’s version of the Garsia-Rodemich-
Rumsey lemma, Lemma B.1.

We begin the iteration by setting γ0 := α?−κ as in (3.60). Then, for fixed t, x1

and x2 we set

ν0 = 2
1− γ0

1− γ0 + α
and ∆0 = |x1 − x2|ν0 .

If t − ε2 > 2∆0, we are ‘far enough’ from time ε2 and we apply (3.67) for s =
t−∆0. This yields(

E
∣∣R̃θε(t;x1, x2)

∣∣p) 1
p
.
(
E
∥∥θ∥∥p

Cα/2,α
[ε2,τ ]

) 1
p |x1 − x2|γ̃1 +

(
E
∣∣R̃θε(s)∣∣pBγ0

) 1
p

×
(
|x1 − x2|1+γ0∆

− 1
2

0

∣∣ log ∆0

∣∣+ |x1 − x2|(∆0)
−1+γ0

2

)
.

[(
E
∥∥θ∥∥p

Cα/2,α
[ε2,τ ]

) 1
p

+
(
E
∣∣R̃θε(s)∣∣pBγ0

) 1
p

]
|x1 − x2|γ̃1

.
(
E
∥∥θ∥∥p

Cα/2,α
[ε2,τ ]

) 1
p |x1 − x2|γ̃1 ,

(3.68)

where

γ̃1 :=
γ0(1− γ0) + α

1− γ0 + α
.

In the second inequality we have used the identity 1− ν0
2 (1− γ0) = γ̃1, as well as

the inequality 1 − ν0
2 + γ0 > γ̃1, which holds since ν0 < 2. The latter inequality

implies that

|x1 − x2|1+γ0∆
− 1

2
0

∣∣ log ∆0

∣∣ . |x1 − x2|(∆0)
−1+γ0

2 .

In the last line of (3.68) we have used the a priori information (3.60) on the regu-
larity of R̃θε .

Otherwise, if t−ε2 ≤ 2∆0 = 2|x1−x2|ν0 we use the a priori knowledge (3.60)
to obtain (

E
∣∣R̃θε(t;x1, x2)

∣∣p) 1
p
.
(
E‖θ‖pC0

τ

) 1
p |x1 − x2|α?−κ

.
(
E‖θ‖pC0

τ

) 1
p |x1 − x2|γ̃1(t− ε2)−α/2 .

(3.69)

As mentioned above, in order to plug the estimate (3.68) back into (3.67) we
still have to replace the bound on the supremum over expectations by a bound on
the expectation of the supremum. Therefore, in order to apply Lemma B.1 we
still need extra information on the behaviour of the spatial δ operator (defined in
Appendix B) applied to R̃θε . Note that

δR̃θε(t; z1, z2, z3) := R̃θε(t; z1, z3)− R̃θε(t; z1, z2)− R̃θε(t; z2, z3)

= δθ̃(t; z1, z2) δX̃ε(t; z2, z3) .
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Recalling the deterministic a priori bound (3.59) on the regularity of X̃ε (and the
definition of | · |[x1,x2] in Appendix B), this identity implies that

(
E sup
x1,x2

∣∣∣∣ |δR̃θε(t)|[x1,x2]

|x1 − x2|α+γ0

∣∣∣∣p) 1
p

.
(
E
∥∥θ∥∥p

Cα/2,ατ

) 1
p
. (3.70)

Recall that, as mentioned above, γ̃1 < α + γ0. Hence, combining (3.68) with
(3.69) and (3.70), we finally obtain from Lemma B.1 that

sup
ε2≤t≤T

(t− ε2)α/2
(
E
∥∥R̃θε(t)∥∥pBγ1

τ

) 1
p .

(
E
∥∥θ∥∥p

Cα/2,α
[ε2,τ ]

+ E
∥∥θ∥∥pC0

τ

) 1
p , (3.71)

where γ1 := γ̃1 − 1
p − κ. Note that this definition of γ1 guarantees the finiteness

of the integral in Lemma B.1.
Let us observe that our calculations have led to improved regularity bounds.

Indeed, we will apply (3.71) in the cases where κ is very small, α? very close to
1
2 , p very large, and α either close to 1

2 or close to 1
3 . In both cases the a priori

information (3.60) yields a regularity exponent γ0 = α?−κ, which is very close to
1
2 . On the other hand, the regularity exponent γ1 in the new bound (3.71) is close
to 7

10 if α ≈ 1
3 , and close to 3

4 if α ≈ 1
2 .

Now we iterate this argument. For n ≥ 1 we define νn, ∆n and γn recursively
as

νn := 2
1− γ0

1− γn + α
, ∆n := |x1 − x2|ν2 , where

γn+1 := γ̃n+1 −
1

p
− κ , and

γ̃n+1 :=
γ0(1− γn) + α

1− γn + α
.

It is readily checked that for all n,

γ0 +
1

2
ανn = γ̃n+1 = 1− νn

2
(1− γn) ,

1− νn
2

+ γn > γ̃n+1 ,
(3.72)

the latter being equivalent to the inequality γn < α+ γ0, which can be checked by
induction.

We now claim that, for every n ≥ 0, one has the bound

sup
ε2<t≤T

(t− ε2)α/2
(
E
∣∣R̃θε(t)∣∣pBγnτ ) 1

p
.
(
E
∥∥θ∥∥p

Cα/2,α
[ε2,τ ]

+ E
∥∥θ∥∥pC0

τ

) 1
p
. (3.73)

The case n = 0 has just been proved above, so it remains to obtain the remaining
bounds by induction. We now assume that (3.73) holds and we aim to show that
this implies the same bound with n replaced by n+ 1.
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As above, we fix t, x1, x2 in each step. Taking (3.72) and (3.73) into account
and applying (3.67) if t− ε2 > 2∆n, we obtain(

E
∣∣R̃θε(t;x1, x2)

∣∣p) 1
p .

.

[(
E
∥∥θ∥∥p

Cα/2,α
[ε2,τ ]

) 1
p

+
(
E
∣∣R̃θε(t−∆n)

∣∣p
Bγn

) 1
p

]
|x1 − x2|γ̃n+1

.
(

1 + (t−∆n − ε2)−α/2
)(

E
∥∥θ∥∥p

Cα/2,α
[ε2,τ ]

+ E
∥∥θ∥∥pC0

τ

) 1
p |x1 − x2|γ̃n+1

. (t− ε2)−α/2
(
E
∥∥θ∥∥p

Cα/2,α
[ε2,τ ]

+ E
∥∥θ∥∥pC0

τ

) 1
p |x1 − x2|γ̃n+1 .

(3.74)

On the other hand we get in the same way as in (3.69) that if t − ε2 ≤ 2∆n we
have (

E
∣∣R̃θε(t;x1, x2)

∣∣p) 1
p .E‖θ‖pC0

τ
|x1 − x2|γ̃n+1(t− ε2)−α/2 . (3.75)

The bound (3.70) on the spatial δ operator is strong enough to be applicable in every
step. Applying Lemma B.1 we obtain indeed that (3.73) holds with n replaced by
n+ 1, as required, so that it holds for every n.

Now on the one hand, we have that γn+1 > γn as long as γn 6= [γ−, γ+] where

γ± :=
1

2

(
1 + α+ γ0 −

1

p
− κ
)

±1

2

√
(1− γ0 − α)2 +

(1

p
+ κ
)2

+ 2
(1

p
+ κ
)

(1 + α− γ0).

On the other hand, the mapping

γ 7→ γ0(1− γ) + α

1− γ + α
− κ− 1

p

is monotonically increasing (as can be checked easily by calculating its derivative).
As γ− is a fixed point of this map and for κ small enough and p large enough we
have γ0 ≤ γ−, this implies that γn ≤ γ− for all n. Hence we can conclude that γn
converges to γ− as n goes to infinity.

Now we use the elementary estimate
√
a2 + b2 + c2 < |a|+|b|+|c| for a, b, c 6=

0 to get

γ− >α+ γ0 −
1

p
− κ−

√
1

2

(1

p
+ κ
)

(1 + α− γ0).

Therefore, for a given γ satisfying (3.56), the desired bound (3.57) follows from
(3.73) if we choose κ small enough and p large enough. �

With Lemma 3.6 in hand, we will now derive bounds on the space-time regular-
ity as well as the dependence on ε. To this end we introduce yet another stopping
time. We write (recalling the definition of the norm |X|Dα,ε in (3.51)).

%X∞ = inf
{
t ≥ 0: ‖Xε −X‖C0

t
≥ εα? or |Xε(t)|Dα?,ε ≥ K

}
. (3.76)

Then we get the following statement.
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Corollary 3.7. Suppose that 1
3 < α < α? <

1
2 and let α̃ < α+α?

2 . Let τ be a
stopping time that almost surely satisfies

τ ≤ %X,α?ε,K ∧ %X∞ ∧ T, (3.77)

where %X,α?ε,K is defined as above in (3.53). Then for any λ < α?−α̃
2 and for p large

enough we get

E
(∥∥Rθε∥∥B2α̃

[ε2,τ ],α̃/2

)p
. T λp

(
E ‖θ‖p

Cα/2,α
[ε2,τ ]

+ E ‖θ‖pC0
τ

)
. (3.78)

Furthermore, for any

λ̄ < α
α+ α? − 2α̃

α+ α?
and for p large enough, we have

E
(∥∥Rθε −Rθ∥∥B2α̃

[ε2,τ ],α̃/2

)p
. ελ̄p

(
E ‖θ‖p

Cα/2,α
[ε2,τ ]

+ E ‖θ‖pCατ
)
. (3.79)

Proof of Corollary 3.7. We define the processes θ̃, Ψ̃θ
ε, X̃ε and R̃θε, as above in

(3.55). Furthermore, we denote by R̃θ and Ψ̃θ the analogous quantities for ε = 0.
We will actually establish the slightly stronger statements

E
(∥∥R̃θε∥∥B2α̃

[ε2,T ],α̃/2

)p
. T λp

(
E ‖θ̃‖p

Cα/2,α
[ε2,T ]

+ E ‖θ̃‖pC0
T

)
. (3.80)

and

E
(∥∥R̃θε − R̃θ∥∥B2α̃

[ε2,T ],α̃/2

)p
. ελ̄p

(
E ‖θ̃‖p

Cα/2,α
[ε2,T ]

+ E ‖θ̃‖pCαT
)
. (3.81)

To this end, we will apply the key bound (3.57) from Lemma 3.6 to this situation.
More precisely, we will use that

sup
ε2<s≤T

(s− ε2)αLp/2 E
∥∥R̃θε(s)‖pBγL . E ‖θ̃‖p

CαL/2,αL
[ε2,T ]

+ E ‖θ̃‖pC0
T

(3.82)

for different values of p, γL, and αL which will be specified below.
In order to improve the estimate (3.82) to the desired estimate (3.80) we have to

move the temporal supremum under the expectation. We get for any ε2 < s < t
that

E
(∣∣∣(t− ε2)α̃/2 |R̃θε(t)|B2α̃ − (s− ε2)α̃/2|R̃θε(s)|B2α̃

∣∣∣p)
. (t− s)α̃p/2 E

∣∣R̃θε(t)∣∣pB2α̃

+ (s− ε2)α̃p/2 E
(∣∣|R̃θε(t)|B2α̃ − |R̃θε(s)|B2α̃

∣∣p ).
(3.83)

To bound the first term on the right hand side of (3.83), we fix 0 < λ1 ≤ α̃
2 and

write

(t− s)α̃p/2 E
∣∣R̃θε(t)∣∣pB2α̃ . (t− s)λ1p (t− ε2)( α̃

2
−λ1)p E

∣∣R̃θε(t)∣∣pB2α̃ .

Then we apply (3.82) with

γL := 2α̃,

αL := 2α̃− α? +
1

p
+

√
1

2p
(1 + α− α?) + κ,
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for some small value of κ. We make the assumption that p is large enough and κ
small enough to ensure that αL < α and αL < α̃ − 2λ1. The condition αL < α
can always be realised due to the assumption α? +α > 2α̃. In order to also ensure
the second condition αL < α̃−2λ1 one has to choose λ1 sufficiently small. In this
way we obtain

(t− s)α̃p/2 E
∣∣R̃θε(t)∣∣pB2α̃ . (t− s)λ1p(t− ε2)( 1

2
(α̃−αL)−λ1)p (3.84)

×
(
E ‖θ̃‖p

Cα/2,α
[ε2,T ]

+ E ‖θ̃‖pC0
T

)
. (3.85)

For the second term on the right hand side of (3.83) we fix λ2 > 0. Then we get
using Hölder’s inequality once

(s− ε2)α̃p/2 E
(∣∣|R̃θε(t)|B2α̃ − |R̃θε(s)|B2α̃

∣∣p )
.

[
(s− ε2)

(α̃+λ2)p
2 E

(
|R̃θε(t)|

p

B2α̃+2λ2
+ |R̃θε(s)|

p

B2α̃+2λ2

)] α̃
α̃+λ2

×
[
E
(∣∣∣|R̃θε(t)|B0 − |R̃θε(s)|B0

∣∣∣p )] λ2
α̃+λ2

. (3.86)

Now we apply (3.82) with

γL := 2(α̃+ λ2),

αL := 2(α̃+ λ2)− α? +
1

p
+

√
1

2p
(1 + α− α?) + κ,

for some small value of κ > 0. In order to ensure that αL < α we choose p very
large and κ very small. Then due to the assumption that α+α? > 2α̃ it is possible
to choose λ2 small enough to ensure that αL < α. The condition on the blowup in
this situation is λ̃ := α̃−αL+λ2

2 > 0 which is satisfied as soon as

0 < α? − α̃− λ2 −
1

p
−
√

1

2p
(1 + α− α?)− κ.

This can be achieved by choosing p even larger and κ even smaller.
In this way, we can estimate the first factor on the right-hand side of (3.86) by

(s− ε2)
(α̃+λ2)p

2 E
(
|R̃θε(t)|

p

B2α̃+2λ2
+ |R̃θε(s)|

p

B2α̃+2λ2

)
. (s− ε2)λ̃p

(
E ‖θ̃‖p

Cα/2,α
[ε2,T ]

+ E ‖θ̃‖pC0
T

)
.

(3.87)

In order to get a bound on the last factor on the right-hand side of (3.86) we write
using the definition (3.9) of R̃θε

sup
x,y
|R̃θε(t;x, y)− R̃θε(s;x, y)|

. sup
x,y

(∣∣Ψ̃θ
ε(t, x)− Ψ̃θ

ε(s, x)
∣∣+
∣∣θ̃(t, x)− θ̃(s, x)

∣∣ ∣∣X̃ε(t, y)
∣∣

+
∣∣θ̃(s, x)

∣∣∣∣X̃ε(t, y)− X̃ε(s, y)
∣∣).

We take the p-th moments of this inequality. Then we use the bound (3.12) on the
regularity of Ψ̃θ

ε (note here that Ψ̃θ
ε satisfies the assumption of Lemma 3.1 with θ(t)

replaced by the adapted process θ(t)1{t<τ}). For p large enough we can choose
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the temporal regularity α1 in this bound to be α?
2 . For the process Xε we make use

of the condition (3.77) on the stopping time τ to get a deterministic bound:∣∣X̃ε(t, y)− X̃ε(s, y)
∣∣

.


|t− s|

α?
2 ‖X̃ε‖Cα?/2,α?τ

if t ≤ τ
|τ − s|

α?
2 ‖X̃ε‖Cα?/2,α?τ

+ |t− τ |
α?
2 ‖X̃ε(τ)‖Dα?,ε if s ≤ τ < t ≤ τ + 1

|t− s|
α?
2 ‖X̃ε(τ)‖Dα?,ε if τ < s < t ≤ τ + 1

. K|t− s|
α?
2 .

In the two remaining cases s ≤ τ < τ + 1 ≤ t and τ + 1 ≤ s we get the same
bound easily. Note that this is the only point in the whole article where we actually
make use of the norm Dα?,ε.

We obtain for p large enough

E
(∣∣∣|R̃θε(t)|B0 − |R̃θε(s)|B0

∣∣∣p)
. |t− s|

α?p
2 E ‖θ̃‖pC0

τ
+ |t− s|

αp
2 E ‖θ̃‖p

Cα/2,α
[ε2,τ ]

.
(3.88)

Then summarising (3.86) – (3.88) we obtain

(s− ε2)α̃p/2 E
(∣∣|R̃θε(t)|B2α̃ − |R̃θε(s)|B2α̃

∣∣p )
. |t− s|

λ2αp
2(λ2+α̃) (s− ε2)

λ̃α̃
α̃+λ2

(
E ‖θ̃‖pC0

τ
+ E ‖θ̃‖p

Cα/2,α
[ε2,τ ]

)
.

(3.89)

Taking λ2 and κ sufficiently small and p sufficiently large, the exponent λ̃α̃
α̃+λ2

can be arbitrarily close to α?−α̃
2 . Combining (3.84) and (3.89) and applying again

Lemma B.1 yields the desired bound (3.78).
To get the bound (3.79) we use an interpolation argument. In fact, in the same

way as above we can write

sup
x,y,t
|R̃θε(t;x, y)− R̃θ(t;x, y)|

. sup
x,t

∣∣Ψ̃θ
ε(t, x)− Ψ̃θ(t, x)

∣∣+ sup
x,y,t

∣∣θ̃(t, x)
∣∣∣∣X̃ε(t, y)− X̃(t, y)

∣∣.
Hence the regularity results from Lemma 3.1 on Ψθ

ε as well as the condition (3.77)
on τ imply that for any small κ > 0 and for any p large enough we have

E
∥∥R̃θε − R̃θ∥∥pB0

T
. εα−κ E

∥∥θ̃∥∥pCαT .
On the other hand we can apply (3.78) for close to maximal spatial regularity to
obtain

E
(∥∥R̃θε∥∥Bα+α?−κ

[ε2,T ],α̃/2

)p
. E ‖θ̃‖p

Cα/2,α
[ε2,T ]

+ E ‖θ̃‖pC0
T
.

Then finally, we can conclude by using the deterministic bound∥∥R̃θε − R̃θ∥∥B2α̃
t
.
(
‖R̃θε

∥∥
B

2α̃
λ
t

+
∥∥R̃θ∥∥

B
2α̃
λ
t

)λ ∥∥R̃θε − R̃θ∥∥1−λ
B0
t

for λ = 2α̃
α+α?−κ . We obtain the desired bound (3.79) by choosing κ small enough.

�



44 MARTIN HAIRER, JAN MAAS, AND HENDRIK WEBER

4. THE REACTION TERM

In this section we derive bounds for the convergence of the reaction term.

4.1. The Gaussian process and stochastic fluctuations. As before, we consider
the solution to the approximate stochastic heat equation

Xε(t, x) =
∑
k∈Z∗

qkε ξ
k
ε (t) eikx , (4.1)

together with its area process Xε(t;x, y), where we use the notation from Section
3. We recall in particular that

E
[
ξkε (s)⊗ ξlε(t)

]
= δk,−lK

|t−s|
k Id ,

where

Ktk = e−f(εk)k2t

for k ∈ Z∗. Recall also that

Λ =
1

2π

∫
R+

∫
R

(1− cos(zt))h2(t)

t2f(t)
µ(dz) dt .

The goal of this section is to prove the following result, which yields a sharp bound,
uniform in time, on the difference

DεXε(t, ·)− Λ Id

measured in the spatial negative Sobolev norm |u|H−η for η < 1
2 .

Proposition 4.1. Let 1 ≤ p < ∞ and 0 < η < 1
2 . Then for all T > 0 and for all

κ > 0 sufficiently small, we have

E
[

sup
t∈[0,T ]

∣∣∣DεXε(t, ·)− Λ Id
∣∣∣p
H−η

] 1
p

. εη−κ . (4.2)

Proof. For fixed z ∈ R and for ε > 0 we introduce the quantity

Λz,ε =
1

ε

∑
k∈Z?

(
qkε
)2 (

1− cos(zεk)
)

=
1

4π

∑
k∈Z?

ε
h(εk)2

f(εk)

1− cos(zεk)

|εk|2
. (4.3)

We also set

Λz,0 =
1

2π

∫
R+

(1− cos(zt))h2(t)

t2f(t)
dt,

and for ε > 0 we define the integrated version

Λε =

∫
R

Λz,ε µ(dz) .

It follows from Lemma 4.2 and Lemma 4.3 below that

E
[

sup
t∈[0,T ]

∣∣∣DεXε(t, ·)− Λε Id
∣∣∣p
H−η

] 1
p

.
∫
R
E
[

sup
t∈[0,T ]

∣∣∣1
ε
Xε(t; ·, ·+ εz)− Λz,ε Id

∣∣∣p
H−η

] 1
p

|µ|(dz)

. εη−κ
∫
R
|z|1+η−κ|µ|(dz) . εη−κ .
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Furthermore, we claim that for any t ∈ [0, T ] and κ > 0,

|Λz,ε − Λz,0| . ε|z|2 . (4.4)

Integrating this inequality with respect to z and using the fact that the second mo-
ment of |µ| is finite, the result follows.

It thus remains to prove the claim (4.4). As in [HM12, Proposition 4.6] we use
the fact that for any function g : R→ R of bounded variation,∣∣∣∑

k∈Z?
εg(εk)−

∫
R
g(t) dt

∣∣∣ ≤ ε(|g|BV + |g(0)|
)
.

Using this fact together with the assumptions on h and f , we obtain

|Λz,ε − Λz,0| . ε
∣∣∣∣s 7→ h2(s)

f(s)

1− cos(sz)

s2

∣∣∣∣
BV

+ ε|z|2

. ε
∣∣∣h2

f

∣∣∣
L∞

∣∣∣s 7→ 1− cos(sz)

s2

∣∣∣∣
BV

+ ε
∣∣∣h2

f

∣∣∣
BV

∣∣∣s 7→ 1− cos(sz)

s2

∣∣∣∣
L∞

+ ε|z|2

. ε|z|2 . (4.5)

which proves the claim. �

For a matrix A, it will be convenient to work with the decomposition A =
A+ +A−, where

[A±]ij :=
1

2

(
Aij ±Aji

)
.

The following two lemmas are the main ingredients in the proof of (4.2).

Lemma 4.2. Let 1 ≤ p < ∞ and 0 < η < 1
2 . Then for all T > 0, for all κ > 0

small enough and z ∈ R we have

E
[

sup
t∈[0,T ]

∣∣∣1
ε
X−ε (t; ·, ·+ εz)

∣∣∣p
H−η

] 1
p

. εη−κ|z|1+η−κ . (4.6)

Proof. We will show that for any 0 < η < 1
2 and for 0 ≤ κ < 1

2 we have for all
0 ≤ s < t ≤ T ,

E
∣∣∣1
ε

(
X−ε (t; ·, ·+ εz)−X−ε (s; ·, ·+ εz)

)∣∣∣2
H−η
. ε2(η−κ)|z|2(1+η−κ)|t− s|κ ,

(4.7)

E
∣∣∣1
ε

(
X−ε (t; ·, ·+ εz)

)∣∣∣2
H−η
. ε2(η−κ)|z|2(1+η−κ) . (4.8)

The result then follows from Lemma B.3. As above in Lemma 3.3, we use the fact
that X−ε (t, ·) belongs to the H−η-valued second order Wiener chaos to see that
(B.16) is satisfied (see Lemma B.4).

Recall that

Xε(t;x, x+ εz) =
∑
k,l∈Z?

qkε q
l
ε Ikl(εz)

(
ξk(t)⊗ ξl(t)

)
ei(k+l)x ,

where for k 6= −l we have

Ikl(εz) :=

∫ εz

0
(eikw − 1) ileilw dw =

l

k + l

(
ei(k+l)εz − 1

)
−
(
eilεz − 1

)
.
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As above this sum has to be interpreted as the limit as N → ∞ of the sums over
0 < |k|, |l| ≤ N .

As a consequence, we have the identity

X−ε (t;x, x+ εz) =
∑
k,l∈Z?

qkε q
l
ε J
−
kl(εz)

(
ξk(t)⊗ ξl(t)

)
ei(k+l)x ,

where for |k| 6= |l|,

J−kl(εz) :=
1

2
(Ikl(εz)− Ilk(εz)) =

1

2
(l − k)

(
ei(k+l)εz − 1

k + l
− eilεz − eiεkz

l − k

)
.

For |k| = |l| this expression must be read as the appropriate limit. Writing ζi,jk,l(s, t) :=

ξik(t)ξ
j
l (t)− ξ

i
k(s)ξ

j
l (s) for brevity, we obtain

E
∣∣∣1
ε

(
X−ε (t; ·, ·+ εz)−X−ε (s; ·, ·+ εz)

)∣∣∣2
H−η

=
∑

k,l,k̄,l̄∈Z?
k+l=k̄+l̄

(
1 + (k + l)2

)−η
qkε q

l
εq
k̄
ε q
l̄
ε

1

ε
J−k,l(εz)

1

ε
J−−k̄,−l̄(εz)

× E
[∑
i 6=j

ζi,jk,l(s, t)ζ
i,j

−k̄,−l̄(s, t)

]
.

Note that the diagonal entries of ζi,jk,l(s, t) vanish so that in the last line we only
have to sum over indices i 6= j. For such indices i 6= j, we use the fact that

E
[
ξik(s) ξ

j
l (s) ξ

i
−k̄(t) ξ

j

−l̄(t)
]

= E
[
ξik(s)ξ

i
−k̄(t)

]
E
[
ξjl (s)ξ

j

−l̄(t)
]

= δk,k̄ δl,l̄K
t−s
k K

t−s
l ,

to obtain, for any κ ∈ [0, 1] and for all indices satisfying k + l = k̄ + l̄,

E
[
ζi,jk,l(s, t) ζ

i,j

−k̄,−l̄(s, t)
]

= 2δk,k̄

(
1−Kt−sk K

t−s
l

)
. δk,k̄

(
1− e−(f(εk)k2+f(εl)l2)|t−s|)

. δk,k̄

(
f(εk)κ|k|2κ + f(εl)κ|l|2κ

)
|t− s|κ . (4.9)

Furthermore, a simple calculation yields that∣∣∣1
ε
J−kl(εz)

∣∣∣2 = (k − l)2z2
[
S((k + l)εz)− S((k − l)εz)

]2 ,

where S(x) = sin(x/2)/x. Using the Assumption 1.4 that h is bounded, we obtain
for k, l 6= 0 that,

qkε q
l
ε .

1√
f(εk)f(εl)|kl|

.
1√

f(εk)f(εl)
∣∣(k + l)2 − (k − l)2

∣∣ .
Moreover, since by Assumption 1.1 f ≥ cf , it follows that for all 0 ≤ κ < 1

2 ,

E
∣∣∣1
ε

(
X−ε (t; ·, ·+ εz)−X−ε (s; ·, ·+ εz)

)∣∣∣2
H−η

.
∑
k,l∈Z?

(
1 + (k + l)2

)−η
(qkε q

l
ε)

2
∣∣∣1
ε
J−kl(εz)

∣∣∣2
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×
(
f(εk)κ|k|2κ + f(εl)κ|l|2κ

)
|t− s|κ

. |t− s|κ|z|2
∑
k,l∈Z?

(
1 + (k + l)2

)−η|k − l|2∣∣∣∣S((k + l)εz)− S((k − l)εz)
(k + l)2 − (k − l)2

∣∣∣∣2
×
(
|k|2κ + |l|2κ

)
. |t− s|κ|z|2

∑
|k|6=|l|∈Z

(
1 + k2

)−η
l2
∣∣∣∣S(kεz)− S(lεz)

k2 − l2

∣∣∣∣2(|k|2κ + |l|2κ
)

,

where in the last line we used the change of variables (k + l, k − l)  (k, l). We
infer that

E
∣∣∣1
ε

(
X−ε (t; ·, ·+ εz)−X−ε (s; ·, ·+ εz)

)∣∣∣2
H−η

(4.10)

. |t− s|κε2η−2κ|z|2+2η−2κ

∫
R2

(
x

yη
S(x)− S(y)

x2 − y2

)2

(x2 + y2)κ dx dy .

It is an elementary exercise to show that

|S(x)− S(y)|
|x2 − y2|

. 1 ∧ 1

x2 + y2
.

Hence, taking into account that η < 1
2 it follows that the integral on the right hand

side of (4.10) converges. This establishes the desired estimate (4.8).
Furthermore, to prove (4.8) we observe that for i 6= j,

E
[
ξik(t) ξ

j
l (t) ξ

i
−k̄(t) ξ

j

−l̄(t)
]

= E
[
ξik(t)ξ

i
−k̄(t)

]
E
[
ξjl (t)ξ

j

−l̄(t)
]

= δk,k̄ δl,l̄ .

Using this identity we obtain

E
∣∣∣1
ε

(
X−ε (t; ·, ·+ εz)

∣∣∣2
H−η

=
∑

k,l,k̄,l̄∈Z?
k+l=k̄+l̄

(
1 + (k + l)2

)−η
qkε q

l
εq
k̄
ε q
l̄
ε

1

ε
J−k,l(εz)

1

ε
J−−k̄,−l̄(εz)

× E
[∑
i 6=j

ξik(t) ξ
j
l (t) ξ

i
−k̄(t) ξ

j

−l̄(t)
]

.
∑
k,l∈Z?

(
1 + (k + l)2

)−η
(qkε q

l
ε)

2
∣∣∣1
ε
J−kl(εz)

∣∣∣2 .
The desired estimate (4.8) follows from this expression, by repeating the argument
for (4.7) with κ = 0. �

The following result gives the corresponding estimate for the symmetric part
X+
ε . Recall that Λz,ε has been defined in (4.3).

Lemma 4.3. Let 1 ≤ p < ∞ and 0 < η < 1
2 . For any T > 0, for κ > 0 small

enough, and for any z ∈ R we have

E
[

sup
t∈[0,T ]

∣∣∣1
ε
X+
ε (t; ·, ·+ εz)− Λz,ε Id

∣∣∣p
H−η

] 1
p

. εη−κ|z|1+η−κ . (4.11)
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Proof. In view of Lemma B.3, it suffices to show that

E
∣∣∣1
ε
X+
ε (t;x, x+ εz)− 1

ε
X+
ε (s;x, x+ εz)

∣∣∣2
H−η
. |t− s|κε2η−2κ|z|2+2η−2κ ,

(4.12)

E
∣∣∣1
ε
X+
ε (t;x, x+ εz)− Λz,ε Id

∣∣∣2
H−η
. ε2η|z|2+2η . (4.13)

As in the proof of Lemma 4.2, we write

X+
ε (t;x, x+ εz) =

∑
k,l∈Z?

qkε q
l
ε J

+
kl(εz)

(
ξk(t)⊗ ξl(t)

)
ei(k+l)x ,

where

J+
kl(εz) :=

1

2

(
Ikl(εz) + Ilk(εz)

)
=

1

2

(
1− eikεz

)(
1− eilεz

)
,

and Ikl(εz) is as in the proof of Lemma 4.2. As above we write

ζ̃k,l(s, t) =ξk(t)⊗ ξl(t)− ξk(s)⊗ ξl(s)
for brevity. Then we obtain

E
∣∣∣1
ε
X+
ε (t;x, x+ εz)− 1

ε
X+
ε (s;x, x+ εz)

∣∣∣2
H−η

=
∑

k,l,k̄,l̄∈Z?
k+l=k̄+l̄

(
1 + (k + l)2

)−η
qkε q

l
εq
k̄
ε q
l̄
ε

1

ε
J+
kl(εz)

1

ε
J+
−k̄,−l̄(εz)

× E tr
(
ζ̃k,l(s, t) ζ̃−l̄,−k̄(s, t)

)
.

A case by case argument yields

E tr
(
ζ̃k,l(s, t)ζ̃−l̄,−k̄(s, t)

)
= 2
(
n2δk,l̄δk̄,l + nδk,k̄δl,l̄

)(
1−Kt−sk K

t−s
l

)
,

and using the definition of K we infer as above in (4.9) that∣∣∣1−Kt−sk K
t−s
l

∣∣∣ . (f(εk)|k|2κ + f(εl)|l|2κ
)
|t− s|κ

for κ ∈ [0, 1]. Using the estimate |qk| . 1√
f(εk)|k|

for k 6= 0, together with the

identity

|J+
kl(zε)|

2 = 2
(
1− cos(zεk)

) (
1− cos(zεl)

)
,

we obtain

E
∣∣∣1
ε
X+
ε (t;x, x+ εz)− 1

ε
X+
ε (s;x, x+ εz)

∣∣∣2
H−η

.
∑
k,l∈Z?

(
1 + (k + l)2

)−η
(qkε q

l
ε)

2 1

ε2
|J+
k,l|

2
(

1−Kt−sk K
t−s
l

)
.
∑
k,l∈Z?

(
1 + (k + l)2

)−η 1− cos(kεz)

f(εk)εk2

1− cos(lεz)

f(εl)εl2

×
(
f(εk)κ|k|2κ + f(εl)κ|l|2κ

)
|t− s|κ

.
∑
k,l∈Z?

1

|k|η|l|η
1− cos(kεz)

k2ε

1− cos(lεz)

l2ε

(
|k|2κ + |l|2κ

)
|t− s|κ
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. |t− s|κε2η−2κ|z|2+2η−2κ ,

which proves (4.12).
In order to prove (4.13), we note that for all x ∈ [−π, π] and t ≥ 0

1

ε
EX+

ε (t;x, x+ εz) =
1

ε

∑
k∈Z?
|qkε |2 J+

k,−k(εz) Id = Λz,ε Id .

Moreover, we write

ζ̂k,l(t) =
(
ξk(t)⊗ ξl(t)

)
− δk,−l Id

for brevity. Then we obtain

E
∣∣∣1
ε
X+
ε (t;x, x+ εz)− Λz,ε Id

∣∣∣2
H−η

=
∑

k,l,k̄,l̄∈Z?
k+l=k̄+l̄

(
1 + (k + l)2

)−η
qkε q

l
εq
k̄
ε q
l̄
ε

1

ε
J+
kl(εz)

1

ε
J+
−k̄,−l̄(εz)

× E tr
(
ζ̂k,l(t) ζ̂−l̄,−k̄(t)

)
.

A case by case argument yields

E tr
(
ζ̂k,l(t)ζ̂−l̄,−k̄(t)

)
= n2δk,l̄δk̄,l + nδk,k̄δl,l̄ .

Arguing as above we obtain

E
∣∣∣1
ε
X+
ε (t;x, x+ εz)− Λz,ε Id

∣∣∣2
H−η

.
∑
k,l∈Z?

(
1 + (k + l)2

)−η
(qkε q

l
ε)

2 1

ε2
|J+
k,l|

2

.
∑
k,l∈Z?

(
1 + (k + l)2

)−η 1− cos(kεz)

f(εk)εk2

1− cos(lεz)

f(εl)εl2

.
∑
k,l∈Z?

1

|k|η|l|η
1− cos(kεz)

k2ε

1− cos(lεz)

l2ε

. ε2η|z|2+2η ,

which proves (4.13). �

4.2. Bounds for the reaction term. We will now derive the estimates for the re-
action terms ΦF (ū), Φ

F (uε)
ε , Υū, and Υuε

ε defined in Section 2.
To this end let ε ∈ (0, 1). We fix Hölder exponents 0 < α < 1

2 and let 0 <

η < 1
2 . Furthermore, we fix Rn×n-valued functions ϕ ∈ CαT and ϕε = ϕ + Dε

with Dε ∈ C0([0, T ];H−η). (See (1.16) and (1.19) above for the definition of
the Hölder norms with blowup). We shall use the notation ‖u‖H−ηt to denote the
temporal supremum of the negative spatial Sobolev norm, i.e.,

‖u‖H−ηt := sup
s∈[0,t]

|u(s)|H−η .

In our application we will have

ϕ(t) = Λ Id , Dε(t) = DεXε(t, ·)− Λ Id .

Of course, ϕ is constant in space and not merely Cα, but we will not make use of
this.



50 MARTIN HAIRER, JAN MAAS, AND HENDRIK WEBER

Furthermore, we fix Rn-valued functions u, uε and Rn×n -valued functions v, vε
in L∞([0, T ]; Cα). In our application, u and uε will be as in the previous sections,
and v = u′, vε = u′ε.

Then we set

Φ(t) =

∫ t

0
S(t− s)F (u(s)) ds , Υ(t) =

∫ t

0
S(t− s)F(u(s), v(s)) ds ,

where

F i(u, v) = ∂kG
i
j(u)vkl ϕ

l,m vjm .

Similarly, for ε > 0 we define

Φε(t) =

∫ t

0
Sε(t− s)F (uε(s)) ds , Υε(t) =

∫ t

0
Sε(t− s)Fε(uε(s), vε(s)) ds ,

where

F iε(u, v) = ∂kG
i
j(u) vkl ϕ

l,m
ε vjm .

Throughout the remainder of this section we assume that the norms

‖ϕ‖CαT , ‖u‖CαT , ‖v‖CαT , ‖uε‖CαT , ‖vε‖CαT ,

are bounded by a constant K > 0, which does not depend on ε. This constant will
often be suppressed below.

We shall first prove a bound on the difference between Φ and Φε.

Proposition 4.4. Let 0 ≤ α ≤ γ ≤ 1. Then, for any t ∈ [0, T ] we have∣∣Φ(t)− Φε(t)
∣∣
Cγ . t

1− 1
2

(γ−α)‖u− uε‖Cαt + ε ,∥∥Φ− Φε

∥∥
C
γ
2 ([0,t],C0)

. t1−
γ
2 ‖u− uε‖Cαt + ε1− γ

2 ,

with implied constant depending on K and T .

Remark 4.5. In the statements of Proposition 4.4 and Proposition 4.6 we do not
include the positive powers of t after the terms involving powers of ε. We simply
bound these by powers of T , which will be absorbed into the implied constants,
because we do not need them.

Proof. Using Corollary 6.6 we obtain for any κ > 0 small enough,∣∣Φ(t)− Φε(t)
∣∣
Cγ

≤
∣∣∣∣ ∫ t

0
S(t− s)(F (u)− F (uε))(s) ds

∣∣∣∣
Cγ

+

∣∣∣∣ ∫ t

0
(S − Sε)(t− s)F (uε)(s) ds

∣∣∣∣
Cγ

. t1−
1
2

(γ−α)‖F (u)− F (uε)‖Cαt + ε t1−
1
2

(γ−α+1+κ)‖F (uε)‖Cαt
. t1−

1
2

(γ−α)‖u− uε‖Cαt + ε t1−
1
2

(γ−α+1+κ) ,

which proves the first bound.
To prove the second inequality, we write(

Φ− Φε

)
(t)−

(
Φ− Φε

)
(s)

=

∫ s

0

(
(S − Sε)(t− r)− (S − Sε)(s− r)

)
F (uε(r)) dr

+

∫ t

s
(S − Sε)(t− r)F (uε(r)) dr
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+

∫ s

0

(
S(t− r)− S(s− r)

)(
F (u(r))− F (uε(r))

)
dr

+

∫ t

s
S(t− r)

(
F (u(r))− F (uε(r))

)
dr

=: I1 + I2 + I3 + I4 .

We shall estimate the first term in two ways. First, using (6.35) and the fact that
|(S − Sε)(t− s)|Cα→C0 . 1, we obtain κ > 0 small enough,

|I1|C0 .

∣∣∣∣ ∫ s

0

(
(S − Sε)(t− r)− (S − Sε)(s− r)

)
F (uε(r)) dr

∣∣∣∣
C0

.
∫ s

0
|(S − Sε)(s− r)|Cα→C0 |F (uε(r))|Cα dr

. ε
∫ s

0
(s− r)−

1
2

(1−α+κ)‖uε‖Cαt dr . ε .

(4.14)

On the other hand, using Lemma 6.4 and Lemma 6.7 for every and any κ > 0
sufficiently small we have the bound∣∣∣ ∫ s−ε2∨0

0

(
Sε(t− r)− Sε(s− r)

)
F (uε(r)) dr

∣∣∣
C0

(4.15)

.
∫ s−ε2∨0

0

∣∣∣Sε(t− s+ ε2)− Sε(ε2
)∣∣∣
C2+κ→C0

×
∣∣∣Sε(s− r − ε2)

∣∣∣
Cα→C2+κ

∣∣F (uε(r))
∣∣
Cα ds

. (t− s)
∫ s−ε2∨0

0
(s− r − ε2)−

2−α+2κ
2 dr . (t− s).

The analogous bound∣∣∣ ∫ s

0

(
S(t− r)− S(s− r)

)
F (uε(r)) dr

∣∣∣
C0
. (t− s), (4.16)

follows in the same way. Using Lemma 6.7 once more we also obtain for any
0 ≤ λ < 2+α

4 and for κ > 0 small enough,∣∣∣ ∫ s

s−ε2∨0

(
Sε(t− r)− Sε(s− r)

)
F (uε(r)) dr

∣∣∣
C0

(4.17)

.
∫ s

s−ε2∨0

∣∣∣Sε(t− s+
s− r

2

)
− Sε

(s− r
2

)∣∣∣
C2λ+κ→C0

×
∣∣∣Sε(s− r

2

)∣∣∣
Cα→C2λ+κ

∣∣F (uε(r))
∣∣
Cα ds

. (t− s)λ
∫ s

s−ε2∨0
ε2λ(s− r)−λ(s− r)−

2λ−α+2κ
2 dr . (t− s)λε2λ.

Combining the estimates (4.14), (4.15), (4.16) and (4.17) we infer that for γ ∈
[0, 1],

|I1|C0 . ε1− γ
2 (t− s)

γ
2 . (4.18)
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Using (6.35) once more, the term I2 is bounded by

|I2|C0 .
∫ t−s

0
|(S − Sε)(r)|Cα→C0‖F (uε)‖Cαt dr

. ε
∫ t−s

0
r−

1
2

(1−α+κ)‖uε‖Cαt dr . ε (t− s)
1
2

(1+α−κ) .

(4.19)

To bound I3 we proceed as in (4.14) to infer that

|I3|C0 ≤
∣∣∣ ∫ s

0

(
S(t− r)− S(s− r)

)(
F (u(r))− F (uε(r))

)
dr
∣∣∣
C0

.
∫ s

0
(t− s)

γ
2 (s− r)−

1
2

(γ−α)‖F (u)− F (uε)‖Cαt dr

. (t− s)
γ
2 s1− 1

2
(γ−α)‖u− uε‖Cαt .

(4.20)

Note that here we have used the fact that the true heat semigroup S(t) satisfies the
regularisation properties without introducing a small constant κ. The last term can
be bounded brutally by

|I4|C0 ≤ |t− s|‖F (u)− F (uε)‖Cαt . |t− s|‖u− uε‖Cαt
. (t− s)

γ
2 t1−

γ
2 ‖u− uε‖Cαt .

Combining all of these estimates, we obtain the desired bound. �

The following result gives a bound on the difference between Υ and Υε.

Proposition 4.6. Let 0 < α < 1
2 and suppose that α ≤ γ < 1 and 0 < η < 1

2 . Let
κ > 0. Then, for any t ∈ [0, T ] we have

|Υ(t)−Υε(t)|Cγ . ε+ ‖Dε‖H−ηt
+ t1−

1
2

(γ−α)−κ
(
‖u− uε‖Cαt + ‖v − vε‖Cαt

)
,

‖Υ−Υε‖C γ2 ([0,t],C0)
. ε1− γ

2 +
∥∥Dε∥∥H−ηt + t1−

γ
2
(
‖u− uε‖Cαt + ‖v − vε‖Cαt

)
,

with implied constants depending on K and T .

Proof. We rewrite the difference Υ−Υε as

Υ(t)−Υε(t) =

∫ t

0
Sε(t− s)

(
F(uε, vε)−Fε(uε, vε)

)
(s) ds

+

∫ t

0
Sε(t− s)

(
F(u, v)−F(uε, vε)

)
(s) ds

+

∫ t

0
(S − Sε)(t− s)F(u, v)(s) ds .

=: I1 + I2 + I3 .

Using Lemma 4.7 in the second term we obtain

|I1|Cγ ≤
∣∣∣ ∫ t

0
Sε(t− s)

(
DG(uε)vεDεvε

)
(s) ds

∣∣∣
Cγ

. ‖Dε‖H−ηt

∫ t

0
(t− s)−

α+γ
2
− 1

4

∣∣(vεDG(uε)vε
)
(s)
∣∣
Cα ds

. t
3
4
−α+γ

2 ‖Dε‖H−ηt .
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Here we have made use of the conditions η < α < 1
2 , γ < 1 to ensure that the

exponent is positive. Furthermore,

|I2|Cγ . t1−
1
2

(γ−α)−κ‖F(u, v)−F(uε, vε)‖Cαt
. t1−

1
2

(γ−α)−κ
(
‖u− uε‖Cαt + ‖v − vε‖Cαt

)
,

and Corollary 6.6 yields for any κ > 0 small enough,

|I3|Cγ . ε t1−
1
2

(1+κ+(γ−α)∨0)‖F(u, v)‖Cαt
. ε t

1−κ+(α−γ)∧0
2 .

Combining these bounds, we obtain the first estimate.
In order to prove the second estimate, we fix 0 ≤ s < t ≤ T and write(

Υ−Υε

)
(t)−

(
Υ−Υε

)
(s) =:

2∑
i=1

3∑
j=1

Jij ,

where

J11 =

∫ s

0

(
Sε(t− r)− Sε(s− r)

)(
F − Fε

)
(uε, vε)(r) dr ,

J12 =

∫ s

0

(
(S − Sε)(t− r)− (S − Sε)(s− r)

)
F(uε, vε)(r) dr ,

J13 =

∫ s

0

(
S(t− r)− S(s− r)

)(
F(u, v)−F(uε, vε)

)
(r) dr ,

and

J21 =

∫ t

s
Sε(t− r)

(
F(u, v)−F(uε, vε)

)
(r) dr ,

J22 =

∫ t

s
Sε(t− r)

(
F − Fε

)
(uε, vε)(r) dr ,

J23 =

∫ t

s
(S − Sε)(t− r)F(u, v)(r) dr .

In order to bound J11 we will use Lemma 4.7 below. In this way we obtain for
κ > 0 small enough,

|J11|C0 .
∫ s

0

∣∣∣∣(Sε(t− r)− Sε(s− r))(vεDG(uε)vεDε
)
(r)

∣∣∣∣
C0

dr

. (t− s)
γ
2

∫ s

0
(s− r)−

α+γ
2
− 1

4

∣∣Dε(r)∣∣H−η ∣∣(vεDG(uε)vε)(r)
∣∣
Cα dr

. s
3
4
−α+γ

2 (t− s)
γ
2 ‖Dε‖H−ηt .

The argument for J12 is the same as the argument for the bound on I1 in the Propo-
sition (4.4). Arguing as in (4.14)–(4.18) we obtain

|J12|C0 . ε1− γ
2 (t− s)

γ
2
−κ‖F(uε, vε)‖Cαt . ε

1− γ
2 (t− s)

γ
2 .

The term J13 can be treated in the same way as the term I3 in the proof of Propo-
sition (4.4). Using the argument from (4.20) we obtain

|J13|C0 . |t− s| ‖F(u, v)−F(uε, vε)‖Cαt
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. t1−
γ
2 |t− s|

γ
2
(
‖u− uε‖Cαt + ‖v − vε‖Cαt

)
.

For the first term involving an integral over [s, t] we get the same bound

|J21|C0 . |t− s|‖F(u, v)−F(uε, vε)‖Cαt
. t1−

γ
2 |t− s|

γ
2
(
‖u− uε‖Cαt + ‖v − vε‖Cαt

)
.

To bound the term J22 we invoke Lemma 4.7 one more time. We obtain

|J22|C0 .
∫ t

s

∣∣∣Sε(t− r)(vεDG(uε)vεDε
)
(r)
∣∣∣
C0
dr

.
∫ t

s
(t− r)−

η
2
− 1

4

∣∣(vεDG(uε)vε)(r)
∣∣
Cα
∣∣Dε(r)∣∣H−η dr

. t
3
4
− η+γ

2 (t− s)
γ
2

∥∥Dε∥∥H−ηt .

Finally, by the argument in (4.19),

|J23|C0 . ε (t− s)
1+α

2
−κ‖F(u, v)‖Cαt . ε(t− s)

1+α
2
−κ .

Putting everything together, we obtain the desired bound. �

The following lemma has been used in the proof above.

Lemma 4.7. Let 0 < η < α < 1
2 and 0 < γ < 1. Then for ψ ∈ Cα and ϕ ∈ H−η

we have for any t > 0 and ε ∈ [0, 1],∣∣Sε(t)(ψ ϕ)
∣∣
Cγ . t

− γ+α
2
− 1

4 |ϕ|H−η |ψ|Cα . (4.21)

Furthermore, for s < t and for any 0 ≤ λ ≤ 1 we have∣∣(Sε(t)− Sε(s))(ψ ϕ)
∣∣
Cγ . (t− s)λs−

γ+α
2
−λ− 1

4 |ϕ|H−η |ψ|Cα . (4.22)

Proof. By the assumption η < α we have |ψ ϕ|H−α . |ψ|Cα |ϕ|H−η . (This
elementary multiplicative inequality follows by duality from the estimate (3.24)
proved above). Therefore the bounds (4.21) and (4.22) follow immediately from
the bounds

|Sε(t)|
H−α→Hγ+ 1

2
. t−

γ+α
2
− 1

4 (4.23a)

|Sε(t)− Sε(s)|
H−α→Hγ+ 1

2
. (t− s)λs−

γ+α
2
−λ− 1

4 , (4.23b)

and from Sobolev embedding.
Actually, the identity (4.23a) follows immediately from the lower bound on f .

To prove (4.23b), we write θ = γ + α+ 1
2 and estimate

sup
k∈Z
|k|θ

(
e−k

2f(εk)s − e−k2f(εk)t
)

. sup
k∈Z
|k|θ e−k2f(εk)s

(
1− e−k2f(εk)(t−s))

. (t− s)λ sup
k∈Z
|k|θ e−k2f(εk)s|k|2λf(εk)λ . (t− s)λ s−λ−

θ
2 .

The estimate (4.23b) follows from this bound. �

Remark 4.8. Note that these L2 based regularity properties for the heat semigroup
are significantly easier to derive than the estimates in Hölder spaces in Section 6.
Also note that we do not encounter any problems in the time regularity for s ≤ ε2.
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5. ROUGH PATH ESTIMATES

In this section we treat the stability of approximations of the term involving
G(u) ∂xu. We will make heavy use of the rough path bounds provided in Appendix
A. We will fix deterministic data (u, uε, X , etc.) and derive bounds based on the
regularity of this data. There will be no randomness involved.

We fix Hölder exponents 1
3 < α̃ ≤ α < 1

2 . We also fix rough path valued map-
pings (X(t),X(t)) and (Xε(t),Xε(t)). To be more precise, we will assume that
the mappings [0, T ] 3 t 7→ X(t) ∈ Cα and [0, T ] 3 t 7→ X(t) ∈ B2α are continu-
ous and that for every t the functions x 7→ X(t, x) and (x, y) 7→ X(t;x, y) satisfy
the consistency relation (A.3). The functions (Xε(t),Xε(t)) will be assumed to
satisfy the same conditions.

We will also fix functions u, uε ∈ CαT . We assume that for every t the func-
tion u is controlled by X . More precisely, we will assume that there are bounded
functions

[0, T ] 3 t 7→ u(t), u′(t) ∈ Cα , [0, T ] 3 t 7→ Ru(t) ∈ B2α;

such that for every t ∈ (0, T ] the maps

x 7→ u(t, x), X(t, x) and (x, y) 7→ Ru(t;x, y) (5.1)

satisfy the relation (A.4). In the same way we will assume that the uε are controlled
by Xε, but only for t > ε2. More precisely, we will assume that there are bounded
functions

[0, T ] 3 t 7→ uε(t), u
′
ε(t) ∈ Cα , (ε2, T ] 3 t 7→ Ruε(t) ∈ B2α ,

such that for every t ∈ (ε2, T ] the maps

x 7→ uε(t, x), Xε(t, x) and (x, y) 7→ Ruε(t;x, y) (5.2)

satisfy the relation (A.4). Let us emphasise that although we use the notation u′ε(t)
for all t ∈ [0, T ], we only assume that u′ε(t) is the rough path derivative of uε(t)
for t ∈ (ε2, T ].

Throughout this section we will make the standing assumption that the norms

‖X‖CαT , ‖Xε‖CαT , ‖X‖B2α
T
, ‖Xε‖B2α

T
, ‖u‖CαT , ‖uε‖CαT , ‖u

′‖CαT , ‖u
′
ε‖CαT

are bounded by a large constant K. We will also assume that for t > 0

|Ru(t)|2α ≤ Kt−
α
2 , |Ru(t)|2α̃ ≤ Kt−

α̃
2 , (5.3)

and for t > ε2

|Ruε(t)|2α ≤ K(t− ε2)−
α
2 , |Ruε(t)|2α̃ ≤ K(t− ε2)−

α̃
2 . (5.4)

Most of the constants that appear in this section (or that are suppressed when we
write .) depend on the choice of this constant K.

The main objects under consideration in this section are the quantities

Z(t, x) =

∫ x

−π
G(u(t, y)) dyu(t, y) ,

Ξ(t, x) =

∫ t

0
S(t− s)∂xZ(s) ds =

∫ t

0
∂xS(t− s)Z(s) ds ,
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along with their approximations

Zε(t, x) =

∫ x

−π

[
G(uε(t, y))Dεuε(t, y)

+ ∂kG
(
uε(t, y)

)i
j
u′ε(t, y)kl DεXε(t; y)l,mu′ε(t, y)jm

]
dy ,

Ξε(t, x) =

∫ t

0
Sε(t− s)∂xZε(s) ds =

∫ t

0
∂xSε(t− s)Zε(s) ds.

Here we have made use of the fact that the heat semigroup S as well as the approx-
imated heat semigroup Sε commute with the spatial derivative. As above, we have
used the notation

DεXε(t; y) =
1

ε

∫
R
Xε(t; y, y + εz)µ(dz) .

Note that we have included indices to capture the trilinear structure in the second
term on the right-hand side. The linear algebra does not play a crucial role for our
argument, and as above we will omit the indices for most of the argument.

Throughout this section we will make the additional assumption that the func-
tion G is bounded with bounded derivatives up to order three. This assumption is
removed in Section 2 using an appropriate stopping time.

As explained in Section 2, the term

∂kG
(
uε(t, y)

)i
j
u′ε(t, y)kl DεXε(t; y)l,mu′ε(t, y)jm , (5.5)

which appears on the right-hand side in the definition of Zε, is included to ensure
that – at least formally – Zε approximates Z, and therefore Ξε approximates Ξ. As
discussed in Sections 2 and 4, this term gives rise to the extra term in the limit.

The main objective of this section is to show that Ξε indeed approximates Ξ. A
precise error bound is given by the following result. In this section we shall useDε
as abbreviation for

Dε =
[
‖X −Xε‖Cα̃T + ‖X−Xε‖B2α̃

T
+ ‖u− uε‖Cα̃T + ‖u′ − u′ε‖Cα̃

[ε2,T ]

+ ‖Ru −Ruε‖B2α̃
[ε2,T ],α̃

]
.

We let r+ := 0 ∨ r denote the positive part of a real number r.

Proposition 5.1. Let 0 < γ < 1 and κ > 0. Then, for all t ∈ [0, T ] we have

|Ξ(t)− Ξε(t)|Cγ . Dε (t− ε2)
1
2

(1−γ−κ)
+ + ε3α−1 (t− ε2)

1
2

(1−γ−α−κ)
+

+ ε1−γ−κ .

The constant which is suppressed in the notation depends on T and K. We shall
also prove the following result concerning the time regularity of the difference
Ξ− Ξε.

Proposition 5.2. Let 0 ≤ γ < 1
2 .Then we have for any κ > 0 small enough and

for t ≥ ε2

‖Ξ− Ξε‖C γ2 ([ε2,t],C0)
. t

1
2

(1−2γ−κ)Dε + ε3α−1.
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First we obtain bounds on the difference between Z and Zε. The bounds (5.6) –
(5.7) will be proved using rough path techniques. For 0 < t < ε2 we shall give a
crude elementary bound in (5.9).

Lemma 5.3. For t > 0 we have

|Z(t)|Cα . t−α/2 . (5.6)

Moreover, for t > ε2 we can write

Z(t)− Zε(t) = T1(t) + T2(t) , (5.7)

where

|T1(t)|Cα̃ . (t− ε2)−α̃/2Dε ,

|T2(t)|C0 . (t− ε2)−α/2ε3α−1 . (5.8)

Finally, for all 0 < t ≤ ε2 we have

|Zε(t)|C1 . εα−1 . (5.9)

The estimate (5.9) holds for all t > 0, but we shall only use it for 0 < t < ε2.

Proof of Lemma 5.3. The estimate (5.9) follows directly from the definition and
the assumptions involving K.

Before estimating the other quantities, we observe that Yε(t, ·) := G
(
uε(t, ·)

)
is

a rough path controlled by (Xε,Xε) with rough path derivative

Yε
′(t, y) = DG(uε(t, y)

)
u′ε(t, y) , (5.10)

and remainder

RYε(t;x, y) = DG
(
uε(t, x)

)
Ruε(t;x, y) (5.11)

+

∫ 1

0

[
DG

(
λuε(t, y) + (1− λ)uε(t, x)

)
−DG

(
uε(t, x)

)]
×
(
uε(t, y)− uε(t, x)

)
dλ .

Recalling the boundedness assumptions from the beginning of this section and in
particular (5.4), we obtain for t > ε2,

|Yε(t)|Cα . 1 , |Yε′(t)|Cα . 1 , |RYε(t)|2α . (t− ε2)−
α
2 . (5.12)

The analogous statements

|Y (t)|Cα . 1 , |Y ′(t)|Cα . 1 , |RY (t)|2α . t−
α
2 (5.13)

for 0 < t < T hold as well. Moreover, we infer form [HW13, Lemma 5.5] that
|Y (t)− Yε(t)|Cα . |u(t)− uε(t)|Cα ,

|Y ′(t)− Yε′(t)|Cα . |u(t)− uε(t)|Cα + |u′(t)− uε′(t)|Cα ,

|RY (t)−RYε(t)|2α . |u(t)− uε(t)|Cα + |Ru(t)−Ruε(t)|2α .
(5.14)

Let us now turn to the proofs of the estimates (5.6) and (5.7). The estimate (5.6)
is a direct consequence of Lemma A.4, combined with the assumptions involving
K and the bounds (5.12).

In order to prove (5.7) we set

Qε(t;x, y) =

∫ y

x
G(uε(t, z)) duε(t, z)−G(uε(t, x))

(
uε(t, y)− uε(t, x)

)
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−DG(uε(t, x))u′ε(t, x)Xε(t;x, y)u′ε(t, x) .

Applying (A.7) and using (5.12) and the assumption that

max{‖Xε‖CαT , ‖Xε‖B2α
T
, ‖uε‖CαT , ‖u

′
ε‖Cα

[ε2,T ]
} ≤ K,

we infer that

|Qε(t)|3α . (t− ε2)−α/2 . (5.15)

For fixed t ∈ (ε2, T ], we may now write

Z(t, x)− Zε(t, x) =

(∫ x

−π
G(u(t, y)) dyu(t, y)−

∫ x

−π
G(uε(t, y)) dyuε(t, y)

)
+

∫
R

(∫ −π+εz

−π

εz − π − y
ε

G(uε(t, y)) duε(t, y)

+

∫ x+εz

x

y − εz − x
ε

G(uε(t, y)) duε(t, y)

)
µ(dz)

+

∫
R

∫ x

−π

Qε(t; y, y + εz)

ε
dy µ(dz)

=: (T1 + S1 + S2)(t, x) .

Here we used a Fubini-type Theorem for rough integrals ([HW13, Lemma 2.10])
to arrive at the expression for S2.

In order to bound T1 we shall apply [Gub04, p. 102], which provides a bound
for the difference between two rough integrals. A slightly weaker result is provided
in [HW13, Lemma 2.9], but we cannot apply this result directly here, as we need
to be careful not to obtain products of terms which scale like (t− ε2)−α̃/2. Taking
(5.12) and (5.14) into account, we infer that

|T1(t)|Cα̃ . (t− ε2)−α̃/2Dε .
Moreover, it follows from (5.15) that

|S3(t)|C1 .
∫
R
|z|3αµ(dz) ε3α−1‖Qε‖C3α

T
. (t− ε2)−α/2ε3α−1 .

In order to bound S1, we note that the second term S12 of S1 can be written as

S12(t, x) =

∫
R

[ ∫ x+εz

x
Y t,z
ε (t, y) duε(t, y)

]
µ(dz) , (5.16)

where

Yε,z,x(t, y) :=
y − εz − x

ε
G(uε(t, y)) .

In view of the a priori bounds on uε and u′ε, it follows from [Hai11, Lemma 2.2]
that Yε,z(t, ·) is controlled by Xε(t, ·) with rough path derivative

Y ′ε,z,x(t, y) :=
y − εz − x

ε
DG(uε(t, y))u′ε(t, y) .

Moreover, since y ∈ [x, x+ εz], the same result implies that

|Yε,z,x(t, ·)|C0 + |Y ′ε,z,x(t, ·)|C0 . |z| ,
|Y ′ε,z,x(t, ·)|Cα . |z|+ ε−1 ,

|RYε,z,x(t; ·, ·)|2α . |z|+ ε−1(t− ε2)−α/2 .

(5.17)
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Lemma A.4 allows us to write the rough integral in (5.16) as∫ x+εz

x
Yε,z,x(t, y) duε(t, y) = Yε,z,x(t, x)

(
uε(t, x+ εz)− uε(t, x)

)
+ Y ′ε,z,x(t, x)Xε(t;x, x+ εz)u′ε(t, x) +Qε(t;x, x+ εz) ,

where

|Qε(t; ·, ·)|3α . (|z|+ ε−1)(t− ε2)−α/2 .

Taking the a priori bounds on |uε|Cα , |u′ε|C0 and |Xε(t; ·, ·)|2α into account, it thus
follows that∣∣∣∣ ∫ ·+εz

·
Yε,z,x(t, y) duε(t, y)

∣∣∣∣
C0

. |Yε,z,x(t, ·)|C0 |εz|α + |Y ′ε,z,x(t, ·)|C0 |εz|2α + |Qε(t; ·, ·)|3α|εz|3α

. |z|
(
|εz|α + |εz|2α

)
+ (|z|+ ε−1)(t− ε2)−α/2|εz|3α .

Taking into account that the (1 + 3α)-moment of |µ| is finite (this is the only place
where we all moments up to order 5

2 ) and using that εα ≤ ε3α−1, we infer that

|S12(t, ·)|C0 . ε3α−1(t− ε2)−α/2 .

Since an analogous argument yields the same estimate for the first term S11 :=
S1 − S12, we infer that

|S1(t, ·)|C0 . ε3α−1(t− ε2)−α/2 .

Hence, setting T2 := S1 + S2 we arrive at the desired conclusion. �

Proof of Proposition 5.1. We start by splitting the integral from 0 to t into three
parts

Ξ(t)− Ξε(t) ≤
∫ ε2∧t

0
∂x(S(t− s)Z(s)− Sε(t− s)Zε(s)) ds

+

∫ t

ε2∧t
∂x(S(t− s)− Sε(t− s))Z(s) ds

+

∫ t

ε2∧t
∂xSε(t− s)(Z(s)− Zε(s)) ds

=: I1 + I2 + I3 .

For the first term we use the estimates (5.6) and (5.9) to obtain for any κ > 0 small
enough

|I1|Cγ ≤
∫ ε2∧t

0
|S(t− s)|Cα→C1+γ |Z(s)|Cα ds

+

∫ ε2∧t

0
|Sε(t− s)|C0→Cγ |∂xZε(s)|C0 ds

.
∫ ε2∧t

0
(ε2 ∧ t− s)−

1
2

(1+γ−α)s−α/2 ds

+

∫ ε2∧t

0
(ε2 ∧ t− s)−

γ
2
−κεα−1 ds

. ε1−γ + ε1+α−γ−2κ
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. ε1−γ .

The terms I2 and I3 are equal to 0 if t ≤ ε2. So from now on we assume t > ε2.
To bound the second part we use Corollary 6.6 and Lemma 5.3 to obtain for any
0 ≤ λ < 1− γ and for κ > 0 small enough

|I2|Cγ .
∫ t

ε2
|S(t− s)− Sε(t− s)|Cα→C1+γ |Z(s)|Cα ds

.
∫ t

ε2
(t− s)−

1
2

(1+γ−α+λ+κ)ελs−
α
2 ds . t

1
2

(1−γ−λ−κ)ελ .

The third part can be estimated using Lemma 6.4 and Lemma 5.3 by

|I3|Cγ .
∫ t

ε2
|Sε(t− s)|Cα̃→C1+γ |T1|Cα̃ ds+

∫ t

ε2
|Sε(t− s)|C0→C1+γ |T2|C0 ds

.
∫ t

ε2

(
(t− s)−

1
2

(1+γ−α̃+κ)(s− ε2)−α̃/2Dε

+ (t− s)−
1
2

(1+γ+κ)(s− ε2)−α/2ε3α−1
)
ds

. Dε (t− ε2)
1
2

(1−γ−κ) + ε3α−1 (t− ε2)
1
2

(1−γ−α−κ) .

Note that within the range of parameters that we consider the integral in the second
line always converges (for κ > 0 small enough), but it may happen that the last
exponent of (t− ε)2 in the last line is negative. �

Proof of Proposition 5.2. Let ε2 ≤ s < t. We need to bound the expression J(t)−
J(s) where

J(t) :=

∫ t

0
∂x
(
δε
(
S(t− r)Z(r)

))
dr.

Here and below we will use the notation δε
(
SZ) := SεZε − SZ, δεS := Sε − S

and so forth. We write J(t)− J(s) = I1(s, t) + I2(s, t) + I3(s, t), where

I1(s, t) :=

∫ ε2

0
∂xδε

[(
S(t− r)− S(s− r)

)
Z(r)

]
dr,

I2(s, t) :=

∫ s

ε2
∂xδε

[(
S(t− r)− S(s− r)

)
Z(r)

]
dr,

I3(s, t) :=

∫ t

s
∂xδε

[
S(t− r)Z(r)

]
dr.

In order to bound I1 we use the bounds (5.6) and (5.9) and brutally bound the
ε-difference by the sum. Then using Lemma 6.7 we get

|I1(s, t)|C0 ≤
∫ ε2

0
|S(t− s)− Id |C1+γ→C1 |S(s− r)|Cα→C1+γ |Z(r)|Cα dr

+

∫ ε2

0
|Sε(t− r − s−r

2 )− Sε(s− r − s−r
2 )|C1+γ+κ→C1

× |Sε( s−r2 )|C1→C1+γ+κ |Zε(r)|C1 dr

. (t− s)
γ
2 ε1−γ .
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Actually, it is obvious that the first integral is bounded by the right hand side. For
the second integral one even gets a better scaling ε1+α−γ−κ for κ > 0 arbitrarily
small.

For the term I2 it is useful to split it up once more. We write

I2(s, t) =

∫ s

ε2
∂x

[
δε
(
S(t− r)− S(s− r)

)]
Z(r) dr

+

∫ s

ε2
∂x
(
Sε(t− r)− Sε(s− r)

)
δεZ(r) dr =: I2,1(s, t) + I2,2(s, t).

To bound I2,1 we use the factorisation

δε
(
S(t− r)− S(s− r)

)
=
(
Sε(t− s+ s−r

2 )− Sε( s−r2 )
)
δεS( s−r2 )

+ δε
(
S(t− s+ s−r

2 )− S( s−r2 )
)
S( s−r2 ).

Then Lemma 6.7 as well as Corollary 6.6 yield for any κ > 0 small enough

|I2,1(s, t)|C0 . (t− s)
γ
2 ε1−γ−κ .

For I2,2 we use the decomposition Z − Zε = T1 + T2. For the term involving
T1 we get using Lemma 6.7 for any κ > 0 small enough∫ s

ε2
|Sε(t− s+ s−r

2 )− Sε( s−r2 )|C1+γ+κ→C1 |Sε( s−r2 )|Cα̃→C1+γ+κ |T1(r)|Cα̃ dr

. (t− s)
γ
2

∫ s

ε2
(s− r)−

1
2

(1+2γ−α̃+κ) (r − ε2)−
α̃
2Dε dr

. (t− s)
γ
2 t

1
2

(1−2γ−2κ)Dε .

Note that we have used the brutal bound (1 + εγ (s− r)−γ/2) . (s− r)−γ/2. For
the term involving T2 we cannot be quite so brutal and we write∣∣∣ ∫ s

ε2
∂x
(
Sε(t− r)− Sε(s− r)

)
T2(r) dr

∣∣∣
C0

≤
∣∣∣ ∫ s−ε2∨ε2

ε2
∂x
(
Sε(t− r)− Sε(s− r)

)
T2(r) dr

∣∣∣
C0

+
∣∣∣ ∫ s

s−ε2∨ε2
∂x
(
Sε(t− r)− Sε(s− r)

)
T2(r) dr

∣∣∣
C0
.

The first integral is bounded by∫ s−ε2∨ε2

ε2

∣∣Sε(t− s+ ε2)− Sε(ε2)
∣∣
C1+γ+κ→C1

×
∣∣Sε(s− ε2 − r)

∣∣
C0→C1+γ+κ

∣∣T2(r)
∣∣
C0dr

. (t− s)
γ
2 ε3α−1

∫ (s−ε2)∨ε2

ε2

(
s− ε2 − r

)− 1+γ+2κ
2 (r − ε2)−

α
2 dr

. (t− s)
γ
2 ε3α−1.

For the second integral we get in the same way∫ s

s−ε2∨ε2

∣∣Sε(t− s+ s−r
2

)
− Sε

(
s−r

2

)∣∣
C1+γ+κ→C1

×
∣∣∣Sε( s−r2

)∣∣
C0→C1+γ+κ

∣∣T2(r)
∣∣
C0dr
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. (t− s)
γ
2 ε3α−1

∫ s

s−ε2∨ε2
εγ(s− r)−

γ
2 (s− r)−

1+γ+2κ
2 (r − ε2)−

α
2 dr

. (t− s)
γ
2 ε3α−1ε1−γ−α−2κ.

Summarising these calculations and redefining κ, we obtain the bound

I2,2(s, t) ≤ (t− s)
γ
2

(
t

1
2

(1−2γ−κ)Dε + ε3α−1
)
.

For I3 we use the same splitting

I3(s, t) =

∫ t

s
∂x
[
δεS(t− r)

]
Z(r) dr +

∫ t

s
∂x
(
Sε(t− r)δεZ(r)

)
dr

=: I3,1(s, t) + I3,2(s, t).

The term I3,1(s, t) can be estimated easily using Corollary 6.6:

|I3,1(s, t)|C0 ≤
∫ t

s
|S(t− r)− Sε(t− r)|Cα→C1 |Z(r)|Cα dr

. (t− s)
γ
2 ε1−γ−κ .

Finally, for I3,2 we get using (5.7) once more that

|I3,2(s, t)|C0 .
∫ t

s
(t− r)−

1
2

(1−α̃+κ)(r − ε2)−
α̃
2Dε

+ (t− r)−
1
2

(1+κ)(r − ε2)−
α
2 ε3α−1 dr

. (t− s)
γ
2

(
t

1
2

(1−γ−κ)Dε + ε3α−1
)
.

Here as above we have absorbed the positive power of t in front of ε3α−1 into the
implicit constant (that may depend on T ) because we do not need it later on. This
finishes the argument. �

6. BOUNDS ON THE APPROXIMATED SEMIGROUP

Throughout the paper, we frequently need bounds on the approximated heat
semigroup Sε. These calculations are collected in this section. We first give some
auxiliary calculations involving the approximated heat kernels that are needed in
the proof of Lemma 3.6.

Lemma 6.1. The following bounds hold:
(i) For any 0 < γ < 1 and for any t ∈ [0, T ] we have the bound∫ π

−π

∣∣(pεt )′(z) ∣∣ |z|γ dz . t−1+γ
2 . (6.1)

If γ = 0 we have∫ π

−π

∣∣(pεt )′(z) ∣∣ dz . t− 1
2 | log t|. (6.2)

(ii) For any 0 < α < 1
2 we have for any 0 < t ≤ T and any x ∈ [−π, π]∫ t

0

∫ π

−π

(
pεs(z)− pεs(z − x)

)2∣∣z∣∣2α dz ds . |x|tα. (6.3)
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Remark 6.2. All of these bounds scale in the optimal way, except for (6.2) where
an additional | log t| appears. When applying this bound in the proof of Lemma 3.6
this small correction does not matter . For (6.3) our proof also shows the bound∫ t

0

∫ π

−π

(
pεs(z)− pεs(z − x)

)2∣∣z∣∣2α dy ds . |x|1+2γ , (6.4)

with a uniform constant for t ∈ [0, T ]. We state (6.3) in this way because it is
convenient in the proof of Lemma 3.6

Proof. (i) We start the calculation by deriving pointwise bounds on(
pεt−s

)′
(z) =

1√
2π

∑
k∈Z

ike−k
2f(εk)teikz.

For |z|2 ≤ t we will simply use the brutal bound∣∣(pεt)′(z)∣∣ .∑
k∈Z
|k|e−k2f(εk)t .

1

t
, (6.5)

which holds uniformly for t ≤ T .
Else, for |z|2 > t we perform a summation by part and obtain

1√
2π

∑
k∈Z

ike−k
2f(εk)teikz

=
1√
2π

∑
k∈Z

i
(
ke−k

2f(εk)t − (k − 1)e−(k−1)2f(ε(k−1))t
)
gk(z),

(6.6)

where ∣∣gk(z)∣∣ :=
∣∣∣ k∑
j=0

eijz
∣∣∣ =

∣∣∣1− ei(k+1)z

1− eiz
∣∣∣ . 1

|z|
, (6.7)

the last two expressions being valid for z 6= 0. In order to bound the sum over the
increments of ke−k

2f(εk)t we write∣∣∣∑
k∈Z

(
ke−k

2f(εk)t − (k − 1)e−(k−1)2f(ε(k−1))t
∣∣∣

≤
∑
k∈Z

∣∣∣e−k2f(εk)t
∣∣∣+
∑
k∈Z
|k|
∣∣∣e−k2f(εk)t − e−(k−1)2f(ε(k−1))t

∣∣∣. (6.8)

The first summand can be bounded easily∑
k∈Z

∣∣∣e−k2f(εk)t
∣∣∣ . t− 1

2 ,

where again the implicit constant is uniform for t ≤ T . For the second summand
we use the brutal bound∣∣t 1

2k
∣∣ . (e−k2f(εk)t/2 + e−(k−1)2f(ε(k−1))t/2

)−1
. (6.9)

Actually, (6.9) is obvious for k = 0 and for k = 1 it states that

t
1
2 .

(
e−f(ε)t/2 + 1

)−1
,
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which is true for t ≤ T . For k 6= 0, 1, we note that

1

4
≤ k2

(k − 1)2
≤ 4,

to bound the right hand side of (6.9) by(
e−k

2f(εk)t t
2 + e−(k−1)2f(ε(k−1)) t

2

)−1
≥
(
e−k

2cf
t
2 + e−

1
4
k2cf

t
2

)−1

≥ 1

2
e

1
8
k2cf t.

(Recall the definition of cf in Assumption 1.1). This establishes (6.9).
Plugging (6.9) into the second term on the right hand side of (6.8) we get∑

k∈Z
|k|
∣∣∣e−k2f(εk)t − e−(k−1)2f(ε(k−1))t

∣∣∣
≤ t−

1
2

∑
k∈Z

∣∣∣e−k2f(εk)t/2 − e−(k−1)2f(ε(k−1))t/2
∣∣∣ . t− 1

2 ,
(6.10)

where we have made use of the BV boundedness from Assumption 1.2.
Hence, summarising (6.6)–(6.10) we obtain∣∣(pεt)′(z)∣∣ . t− 1

2 |z|−1.

Finally, we can conclude the desired bounds (6.1) for γ > 0∫ π

−π

∣∣(pεt )′(z)∣∣|z|γ dz ≤ t γ2 ∫
|z|≤t

1
2

∣∣(pεt )′(z)∣∣ dz +

∫
|z|>t

1
2

∣∣(pεt )′(z)∣∣|z|γ dz
. t

γ−1
2 + 2

∫ π

t
1
2

t−
1
2 |z|γ−1 dz . t

γ−1
2 , (6.11)

and similarly for γ = 0 we obtain (6.2):∫ π

−π

∣∣(pεt )′(z)∣∣ dz ≤ ∫
|z|≤t

1
2

∣∣(pεt )′(z)∣∣ dz +

∫
|z|>t

1
2

∣∣(pεt )′(z)∣∣ dz
≤ t−1t

1
2 + 2

∫ π

t
1
2

t−
1
2 |z|−1 dz . t−

1
2

∣∣ log t
∣∣. (6.12)

(ii) In order to prove (6.3) we again have to get pointwise bounds bounds on the
integrand. We distinguish between two different cases: the case where |x| > s

1
2

and the case where |x| ≤ s
1
2 .

Let us start by the first case, i.e. let us assume that |x| > s
1
2 . In that case

pεs(z−x) is not a good approximation of pεs(z) and we bound the difference by the
sum. We write ∫ π

−π

(
pεs(z)− pεs(z − x)

)2∣∣z∣∣2α dz
.
∫ π

−π
pεs(z)

2
∣∣z∣∣2α dz + |x|2α

∫ π

−π
pεs(z)

2 dz.

(6.13)

The derivation of bounds for these two integrals is similar to the calculation for
(6.1) and (6.2). In the same way as in (6.5) we get for |z| ≤ s

1
2 that

pεs(z)
2 ≤

(∑
k∈Z

e−k
2f(εk)s

)2

. s−1. (6.14)
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Then performing the same summation by part as in (6.6) we get for |z| > s
1
2

pεs(z)
2 .

(∑
k∈Z

(
e−k

2f(εk)s − e−(k−1)2f(ε(k−1))s
)
|z|−1

)2

. |z|−2. (6.15)

Hence we get as in (6.11) and (6.12) that∫ π

−π
(pεs)

′(z)2|z|2α dz . sα−
1
2 +

∫ π

s
1
2

|z|2α−2 dz . sα−
1
2 . (6.16)

and ∫ π

−π
(pεs)

′(z)2 dz . |x|2α
(
s−

1
2 +

∫ π

s
1
2

|z|−2 dz
)
. |x|2αs−

1
2 . (6.17)

Now let us treat the second case, where |x| ≤ s
1
2 . In that case we write

pεs(z)− pεs(z − x) =
1√
2π

∑
k∈Z?

e−k
2f(εk)seikz

(
1− eikx

)
.

As before we use a brutal bound for |z| ≤ s
1
2(

pεs(z)− pεs(z − x)
)2
.

( ∑
k∈Z?

e−k
2f(εk)s|kx|

)2

. |x|2s−2,

and a summation by part if |z| > s
1
2 . As above in (6.6) and (6.7) we get∣∣∣ ∑

k∈Z?
e−k

2f(εk)seikz
(
1− eikx

)∣∣∣
. |z|−1

∣∣∣ ∑
k∈Z?

e−k
2f(εk)s

(
1− eikx

)
− e−(k−1)2f(ε(k−1))s

(
1− ei(k−1)x

)∣∣∣
. |z|−1

∑
k∈Z?

∣∣∣e−k2f(εk)s − e−(k−1)2f(ε(k−1))s
∣∣∣ ∣∣∣1− eikx∣∣∣

+ |z|−1
∑
k∈Z?

e−k
2 f(ε(k−1)) s

∣∣∣eikx − ei(k−1)x
∣∣∣.

The first sum can be bounded as above in (6.10)∑
k∈Z?

∣∣∣e−k2f(εk)s − e−(k−1)2f(ε(k−1))s
∣∣∣ ∣∣∣1− eikx∣∣∣

.
∑
k∈Z?

∣∣∣e−k2f(εk)s − e−(k−1)2f(ε(k−1))s
∣∣∣ |kx| . |x|s− 1

2 .

For the second sum we write∑
k∈Z?

e−k
2 f(ε(k−1)) s

∣∣∣eikx − ei(k−1)x
∣∣∣ . |x|∑

k∈Z?
e−k

2 f(ε(k−1)) s . |x|s−
1
2 .

Hence integrating over z yields∫ π

−π

(
pεs(z)− pεs(z − x)

)2∣∣z∣∣2α dz
. sα

∫
|z|≤s

1
2

|x|2s−2dz +

∫
|z|>s

1
2

|z|−2+2α|x|2s−1dz . |x|2sα−
3
2 .
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Finally, integrating over s we get, splitting the integral over [0, t] into an integral
over [0, |x|2 ∧ t] and an integral over [|x|2 ∧ t, t]∫ t

0

∫ π

−π

(
pεs(z)− pεs(z − x)

)2∣∣z∣∣2α dy ds
≤
∫ |x|2∧t

0
sα−

1
2 + |x|2αs−

1
2 ds+

∫ t

|x|2∧t
|x|2sα−

3
2 ds . |x|tα ,

thus concluding the proof. �

We will now proceed to prove bounds on the regularisation property of the ap-
proximate heat semigroup Sε on Hölder spaces. These bounds are similar to the
well-known optimal regularity results for the heat semigroup S. Unfortunately,
we cannot apply standard multiplier results in Hölder spaces such as the one in
[ABB04], since in our application the conditions in these spaces are typically not
satisfied uniformly in ε. We circumvent this problem by proving optimal regularity
in Lp-based Sobolev spaces and then use Sobolev embeddings. In this way, we do
not obtain the optimal regularity though, but we always loose an arbitrarily small
exponent κ.

We first state a simple corollary of the classical Marcinkiewicz multiplier theo-
rem [Mar39]. In order to state the result we introduce the following notation. For
any sequence {m(k)}k∈Z we define

‖m‖M := sup
k∈Z
|m(k)|+ sup

l≥0

2l+1−1∑
k=2l

∑
σ∈{−1,1}

|m(σk)−m(σ(k + 1))| . (6.18)

The result can now be formulated as follows.

Lemma 6.3. Let {m(k)}k∈Z be a real sequence and let Tm be the associated
Fourier multiplication operator given by

Tme
ik· = m(k)eik· .

For any γ ∈ R we define the sequence {mγ}k∈Z by

mγ(k) = |k|−γm(k) (6.19)

for k 6= 0 and mγ(0) = m(0). Then, for any γ̄ > (0 ∧ −γ) and any 0 < κ < γ̄
we have ∥∥Tm∥∥Cγ̄+γ→Cγ̄−κ . ‖m

γ‖M.

Proof. For any 1 < p <∞ the Marcinkiewicz multiplier theorem [Mar39] asserts
that ∥∥Tmγ∥∥Lp→Lp . ‖mγ‖M,
where Tmγ is the Fourier multiplier associated to mγ . Hence, it follows immedi-
ately from the definition of the Bessel potential spaces Hγ,p that∥∥Tm∥∥Hγ+γ̄−κ/2,p→H γ̄−κ/2,p . ‖mγ‖M.
(See, e.g. [Gra09, Section 6.1.2] or [Mey92] for proofs in the whole space; the
extension to the torus is immediate.) Then the desired statement follows from the
embedding

Cγ+γ̄ ↪→ Hγ+γ̄−κ/2,p,
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and the Sobolev embedding

H γ̄−κ/2,p ↪→ Cγ̄−κ,

which holds as soon as p is sufficiently large. �

With this result in hand we are now ready to derive the bounds on Sε. Through-
out the following lemmas we will use the notation

mε,t(k) = e−k
2f(εk)t. (6.20)

In this notation Assumption 1.2 implies that

sup
ε,t>0

∥∥mε,t

∥∥
BV

<∞. (6.21)

This is because mε,t(k) = bt/ε2(εk), and the BV-norm is invariant under repara-
metrisations.

Lemma 6.4. For any γ, γ̄ ≥ 0 and for any t > 0 we have

sup
ε∈(0,1)

‖Sε(t)‖Cγ̄→Cγ̄+γ−κ . t−
γ
2 . (6.22)

Proof. We have for any k ∈ Z? that

|k|γmε,t(k) = |k|γ e−k2f(εk)t . t−
γ
2 sup
x∈R
|x|γe−x2cf . t−

γ
2 .

To bound the BV norm of |k|γmε,t we write∑
k∈Z\{0,1}

∣∣∣ |k + 1|γmε,t(k + 1)− |k|γmε,t(k)
∣∣∣

≤
∑

k∈Z\{0,1}

∣∣ |k + 1|γ − |k|γ
∣∣mε,t(k) +

∑
k∈Z\{0,1}

|k|γ |mε,t(k + 1)−mε,t(k)|.

To bound the first term we use the fact that
∣∣ |k + 1|γ − |k|γ

∣∣ . |k|γ−1 to obtain∑
k∈Z\{0,1}

∣∣ |k + 1|γ − |k|γ
∣∣mε,t(k) .

∑
k∈Z\{0,1}

|k|γ−1e−k
2tcf . t−

γ
2 .

To bound the second term we use the same argument as above in (6.9) to show that∣∣t 1
2k
∣∣γ . (e−k2f(εk)t/2 + e−(k−1)2f(ε(k−1))t/2

)−1
. (6.23)

This bound then implies that∑
k∈Z\{0,1}

|k|γ |mε,t(k + 1)−mε,t(k)|

. t
γ
2

∑
k∈Z\{0,1}

|mε,t/2(k + 1)−mε,t/2(k)| . t
γ
2 ,

where in the last inequality we have made use of (6.21). Then Lemma 6.3 implies
the desired bound (6.22) �

Lemma 6.5. For any γ ∈ [0, 1], for γ̄ ≥ 0, and for κ > 0 we have

sup
t∈[0,T ]

‖S(t)− Sε(t)‖Cγ̄+γ→Cγ̄−κ . ε
γ . (6.24)
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Proof. As a shorthand, we use the notations

δεmt := mε,t −mt , δεm
γ
t := mγ

ε,t −m
γ
t ,

where mε,t is defined in (6.20) and mγ
ε,t(k) := |k|−γmε,t and mγ

t := |k|−γmt as
in (6.19). The bound follows from 6.3 as soon as we have established the estimate∥∥δεmγ

t

∥∥
M . ε

γ . (6.25)

Observe that δεm
γ
t (0) = 0, so that from now on we will only deal with k 6= 0.

By symmetry it suffices to consider the positive Fourier modes, hence, to simplify
notation, we will neglect the terms with σ = −1 in the definition of ‖ · ‖M.

In order to establish (6.25) we start by showing that

sup
k∈Z

∣∣δεmγ
t (k)

∣∣ . εγ . (6.26)

Recall that according to Assumption 1.1 f is differentiable on (−δ, δ) with
bounded derivatives. Therefore, if 0 < |εk| ≤ δ we can write∣∣δεmγ

t (k)
∣∣ =

1

|k|γ
[
e−tk

2f(εk) − e−tk2
]

(6.27)

.
1

|k|γ
e−cf tk

2
tk2
∣∣f(εk)− 1

∣∣ . 1

|k|γ
|εk| . εγ .

Here we have made use of the fact that the function x 7→ x exp
(
−cfx

)
is bounded

on [0,∞) as well as of the boundedness of f ′ on (−δ, δ).
If |εk| ≥ δ the bound (6.26) can be established simply by writing∣∣δεmγ

t (k)
∣∣ . |k|−γ . εγ . (6.28)

The bounds on the BV-norms of the Paley-Littlewood blocks

2l+1−1∑
k=2l

∣∣δεmγ
t (k)− δεmγ

t (k + 1)
∣∣

require more thought. Actually, we can always write using the inequality |fg|BV ≤
|f |C0 |g|BV + |g|C0 |f |BV

2l+1−1∑
k=2l

∣∣δεmγ
t (k)− δεmγ

t (k + 1)
∣∣ ≤ 1

2lγ

2l+1−1∑
k=2l

∣∣δεmt(k)− δεmt(k + 1)
∣∣

+
1

2lγ
sup

k∈[2l,2l+1]

∣∣δεmt(k)
∣∣ . (6.29)

The second summand can be bounded as in (6.27) and (6.28). We get
1

2lγ
sup

k∈[2l,2l+1]

∣∣δεmt(k)
∣∣ . εγ . (6.30)

For the first term on the right-hand side of (6.29) we distinguish between different
cases.

We first consider the case where ε2l+1 ≥ δ. In this case the mε,t(k) for
k ∈ [2l, 2l+1] are not good approximations to the mt(k). Hence we bound the
difference by the sum∣∣δεmt(k)−δεmt(k+1)

∣∣ ≤ ∣∣mε,t(k)−mε,t(k+1)
∣∣+∣∣mt(k)−mt(k+1)

∣∣ . (6.31)
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Then we get using Assumption 1.2 on the boundedness of the BV norm of mε,t

1

2lγ

2l+1−1∑
k=2l

∣∣mε,t(k)−mε,t(k + 1)
∣∣ . 1

2lγ
. εγ . (6.32)

The second term on the right-hand side of (6.31) can be bounded in the same way.
Secondly, we consider the case ε2l+1 < δ. In order to treat this case, we claim

that for any non-negative numbers gij with i, j ∈ {0, 1}, we have

|e−g00 − e−g01 − e−g10 + e−g11 | ≤ e−m
[∣∣g00 − g01 − g10 + g11

∣∣ (6.33)

+
(
|g00 − g01|+ |g10 − g11|

)(
|g00 − g10|+ |g01 − g11|

)]
,

where m = min gij . To see this, set

g(λ, µ) = (1− λ)(1− µ)g00 + (1− λ)µg01 + λ(1− µ)g10 + λµg11

and note that the left-hand side of (6.33) can be written as∣∣∣ ∫ 1

0

∫ 1

0
∂λ∂µ exp(−g(λ, µ)) dλ dµ

∣∣∣
≤
∣∣∣ ∫ 1

0

∫ 1

0

[
|∂λ∂µg(λ, µ)|+ |∂λg(λ, µ)||∂µg(λ, µ)|

]
exp(−g(λ, µ)) dλ dµ

∣∣∣ .
The estimate (6.33) follows using the inequalities

∂λ∂µg(λ, µ) = g00 − g01 − g10 + g11 ,

∂λg(λ, µ) ≤ |g00 − g10|+ |g01 − g11| ,
∂µg(λ, µ) ≤ |g00 − g01|+ |g10 − g11| ,
g(λ, µ) ≥ m .

Applying this estimate to g0i = (k+ i)2t and g1i = (k+ i)2tf(ε(k+ i)), we infer
that

1

2lγ

2l+1−1∑
k=2l

∣∣δεmt(k)− δεmt(k + 1)
∣∣ ≤ 1

2lγ

2l+1−1∑
k=2l

e−cf tk
2(
Bε,t(k) + Cε,t(k)

)
(6.34)

where

Bε,t(k) =
∣∣∣tk2

(
f(εk)− 1

)
− t(k + 1)2

(
f(ε(k + 1))− 1

)∣∣∣ . tεk2 ,

and, taking into account that εk . 1,

Cε,t(k) =
[∣∣∣tk2 − t(k + 1)2

∣∣∣+
∣∣∣tk2f(εk)− t(k + 1)2f(ε(k + 1))

∣∣∣]
×
[∣∣∣tk2

(
f(εk)− 1

)∣∣∣+ t(k + 1)2
∣∣f(ε(k + 1))− 1

∣∣]
. (tk) · (tεk3) = t2εk4 .

Using these bounds, together with the fact that M = supx≥0{xe−x, x2e−x} <∞,
we infer that

1

2lγ

2l+1−1∑
k=2l

∣∣δεmt(k)− δεmt(k + 1)
∣∣ . M

2lγ

2l+1−1∑
k=2l

ε . 2l(1−γ)ε . εγ .

This finishes the proof of (6.25) and hence of (6.24). �
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The following result is now an immediate consequence.

Corollary 6.6. Let λ ∈ [0, 1] and α ≤ γ + λ. For κ > 0 sufficiently small,

|S(t)− Sε(t)|Cα→Cγ . t−
1
2

(γ−α+λ+κ)ελ . (6.35)

Proof. This follows from the decomposition

S(t)− Sε(t) =
(
S(t/2)− Sε(t/2)

)(
S(t/2) + Sε(t/2)

)
,

and Lemma 6.4 and Lemma 6.5. �

The next result concerns the time regularity of solutions to the approximated
heat equation. Recall that the approximated heat semigroup Sε is not strongly
continuous at 0 and we cannot expect convergence to zero of

∣∣Sε(t)− Id
∣∣
Cγ→C0 as

t → 0. However, the following result states that the approximating semigroup has
nice time continuity properties for times t ≥ s with a blowup if s ≤ ε2.

Lemma 6.7. Let γ̄ ≥ 0 and γ ∈ [0, 2]. Then, for all t ≥ s > 0 we have

|Sε(t)− Sε(s)|Cγ̄+γ+κ→Cγ̄ .
(
1 + εγs−

γ
2
)
|t− s|

γ
2 .

Proof. As above we write

mγ
ε,t(k) = k−γ exp(−tk2f(εk)) , mε,t(k) = exp(−tk2f(εk)) .

Lemma 6.3 implies the desired result as soon as we have established that∣∣mγ
ε,t −mγ

ε,s

∣∣
M .

(
1 + εγs−

γ
2
)
(t− s)

γ
2 ,

where the norm | · |M has been defined in (6.18). By symmetry it suffices to
consider the Fourier coefficients with k > 0, i.e. the terms with σ = 1. Throughout
the calculations we will write

δs,tm
γ
ε (k) := mγ

ε,t(k)−mγ
ε,s(k) ,

and similarly for δs,tmε.
In order to bound the supremum of the δs,tm

γ
ε we write for any k ∈ Z?

|δs,tmγ
ε (k)| = k−γe−sk

2f(εk)
(
1− e−(t−s)k2f(εk)

)
. (t− s)

γ
2 e−sk

2f(εk)f(εk)
γ
2

If |εk| ≤ δ Assumption 1.1 implies that f is bounded and hence the whole expres-
sion is bounded by |t− s|

γ
2 up to a constant. If |εk| > δ we can write

(t− s)
γ
2 e−sk

2f(εk)f(εk)
γ
2 . (t− s)

γ
2 e−

s
ε2
δ2f(εk)f(εk)

γ
2 (6.36)

. (t− s)
γ
2 εγs−

γ
2 sup
x∈R

e−δ
2|x||x|

γ
2 . (t− s)

γ
2 .

It remains to bound the Paley-Littlewood blocks. We start with the case 0 <
ε2l+1 ≤ δ. On [−δ, δ] the function f is C1 by assumption. In this case we will
show that

2l+1−1∑
k=2l

∣∣δs,tmγ
ε (k)− δs,tmγ

ε (k + 1)
∣∣ . |t− s|γ/2 . (6.37)

We start by writing
2l+1−1∑
k=2l

∣∣δs,tmγ
ε (k)− δs,tmγ

ε (k + 1)
∣∣ ≤ ∫ 2l+1

2l

∣∣∂xδs,tmγ
ε (x)

∣∣ dx
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≤
∫ 2l+1

2l

∣∣∣[ε(t− s)x2−γf ′(εx) + 2x1−γ(t− s)f(εx)
]
e−tx

2f(εx)
∣∣∣ dx

+

∫ 2l+1

2l

∣∣∣εsx3f ′(εx) + 2sx2f(εx) + γ

x1+γ

∣∣∣(e−sx2f(εx) − e−tx2f(εx)
)
dx

. |t− s|
∫ 2l+1

2l
x1−γe−tx

2f(εx) dx (6.38)

+

∫ 2l+1

2l

sx2 + 1

x1+γ

(
e−sx

2f(εx) − e−tx2f(εx)
)
dx .

For the first term, we use the boundedness of f on [−δ, δ] as well as the lower
bound f ≥ cf , so that

|t− s|
∫ 2l+1

2l

∣∣∣x1−γe−tx
2f(εx)

∣∣∣ dx ≤ |t− s| γ2 ∫ |t−s|1/22l+1

|t−s|1/22l
z1−γ e−z

2cf dz

. |t− s|
γ
2 ,

as required, where we used the fact that |t − s| ≤ t. We break the second term in
two components. For the first one, we have∫ 2l+1

2l

sx2

x1+γ

(
e−sx

2f(εx) − e−tx2f(εx)
)
dx

.
∫ 2l+1

2l
sx1−γ e−sx

2cf
∣∣1− e−(t−s)x2f(εx)

∣∣ dx
.
∫ 2l+1

2l
sx1−γ e−sx

2cf
∣∣(t− s)x2f(εx)

∣∣ γ2 dx
. (t− s)

γ
2

∫ ∞
0

z e−2z2cf dz . (t− s)
γ
2 .

For the remaining term, we obtain∫ 2l+1

2l

1

x1+γ

(
e−sx

2f(εx) − e−tx2f(εx)
)
dx

.
∫ 2l+1

2l

1

x1+γ

∣∣1− e−(t−s)x2f(εx)
∣∣ dx . ∫ 2l+1

2l

1 ∧ |t− s|x2

x1+γ
dx

. (t− s)
γ
2

∫ ∞
0

1 ∧ z2

z1+γ
dz . (t− s)

γ
2 .

Let us now treat the case δ ≤ ε2l+1. In this case we will establish

2l+1−1∑
k=2l

∣∣δs,tmγ
ε (k)− δs,tmγ

ε (k + 1)
∣∣ . εγs− γ2 |t− s|γ/2 . (6.39)

Since δs,tm
γ
ε (x) = x−γδs,tmε(x), we obtain

2l+1−1∑
k=2l

∣∣δs,tmγ
ε (k)− δs,tmγ

ε (k + 1)
∣∣ ≤ 1

2lγ

2l+1−1∑
k=2l

∣∣δs,tmε(k)− δs,tmε(k + 1)
∣∣
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+
1

2lγ
sup

k∈[2l,2l+1]

∣∣δs,tmε(k)
∣∣ . (6.40)

The second term in this expression can be bounded by

1

2lγ
sup

k∈[2l,2l+1]

∣∣δs,tmε(k)
∣∣ . 1

2lγ
sup

k∈[2l,2l+1]

exp(−sk2f(εk))|t− s|
γ
2 kγf(εk)

γ
2

. |t− s|
γ
2 sup
k∈[2l,2l+1]

e−sk
2f(εk)f(εk)

γ
2 .

As above in (6.36) using the fact that k ≥ 1
2δ this expression can be bounded by

εγs−
γ
2 |t− s|

γ
2 up to a constant.

It remains to bound the terms

1

2lγ

2l+1−1∑
k=2l

∣∣δs,tmε(k)− δs,tmε(k + 1)
∣∣ ≤ 1

2lγ
|δs,tmε|BV . (6.41)

For this, it turns out to be sufficient to show that for any λ1 < λ2 we have the
bound ∣∣Gλ1,λ2

∣∣
BV
.
λ2 − λ1

λ1
, (6.42)

where

Gλ1,λ2(x) := exp
(
− λ1x

2f(x)
)
− exp

(
− λ2x

2f(x)
)
.

Assuming that we have established (6.42), we can rewrite δs,tmε as

δs,tmε(x) = G s
ε2
, t
ε2

(εx) .

Then (6.42) implies the bound

|δs,tmε(x)|BV .
|t− s|
s

.

On the other hand, Assumption 1.2 immediately implies that |δs,tmε(x)|BV . 1,
so that |δs,tmε(x)|BV . |t− s|

γ
2 s−

γ
2 . Plugging this back into (6.41) and using the

fact that ε2l ≥ δ/2, we immediately obtain the required bound.
It remains to show (6.42).For any x̂, c > 0 we set Ac(x̂) = e−x̂ − e−(1+c )x̂.

then for x̂ < ŷ we observe the bound

|Ac(x̂)−Ac(ŷ)| =
∫ ŷ

x̂
e−z − (1 + c)e−(1+c )z dz . c

∫ ŷ

x̂
e−

z
2 dz

= c
∣∣e− x̂2 − e− ŷ2 ∣∣ .

Applying the observation for x̂ := λ1x
2f(x) and for c := λ2−λ1

λ1
we see that the

BV-norm ofGλ1,λ2 is bounded by λ2−λ1
λ1

times the BV-norm of exp
(
−λ1

2 x
2f(x)

)
.

This on the other hand is bounded uniformly in λ1 by Assumption 1.2, so that we
have established (6.42). �
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APPENDIX A. ROUGH INTEGRALS

In this appendix we briefly summarise the definition and the properties of rough
integrals we use. We refer the reader to [LQ02, Gub04, LCL07, HW13, FV10] for
a more complete account of rough path theory.

As above for X ∈ C0 we will always use the notation δX(x, y) := X(y) −
X(x). For R ∈ B0 we will write δR(x, y, z) := R(x, z)−R(x, y)−R(y, z). See
[Gub04, GT10] for a discussion of the algebraic properties of these operators.

We want to define integrals of the type∫ y

x
Y (z) ⊗ dZ(z) (A.1)

for functions Y, Z ∈ Cα for some α ∈ (0, 1). If α > 1
2 such integrals can be

defined as limits of Riemann-sums of type∑
i

Y (xi)⊗ δZ(xi, xi+1). (A.2)

This yields the Young integral.
If α ≤ 1

2 Riemann sums of type (A.2) will in general fail to converge. The idea
is then to define a better approximation with the help of additional data. To this
end we introduce the following definitions.

Definition A.1. An α-rough path consists of two functions X ∈ Cα(Rn) and X ∈
B2α

(
Rn ⊗ Rn

)
satisfying the relation

X(x, z)−X(x, y)−X(y, z) = δX(x, y)⊗ δX(y, z) (A.3)

for all x, y, z. An α-rough path (X,X) is called geometric if in addition for every
x, y the symmetric part X+(x, y) = 1

2(X(x, y) + X(x, y)T of X(x, y) satisfies

X+(x, y) =
1

2
δX(x, y)⊗ δX(x, y).

Following [Gub04] we also define:

Definition A.2. Let X be in Cα A pair (Y, Y ′) with Y ∈ Cα and Y ′ ∈ Cα(L(Rn))
is said to be controlled by X if for all x, y

δY (x, y) = Y ′(x) δX(x, y) +RY (x, y), (A.4)

with a remainderRY ∈ B2α.

Note that (A.4) is a linear condition. So for a given X the space of paths that are
controlled by X is a vector space.

Remark A.3. In general the decomposition (A.4) need not be unique, but in all of
the situations we will encounter there is a natural choice of Y ′, which will be called
the rough path derivative of Y .

If Y, Z are controlled by X and there is a choice of X turning (X,X) into a
rough path, we construct the rough integral integral

∫
Y dZ as the limit of the

second order approximations∑
i

Y (xi)⊗
(
Z(xi+1)− Z(xi)

)
+ Y ′(xi)X(xi, xi+1)Z ′(xi)

T . (A.5)

If α > 1
3 , it turns out that these approximations converge:
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Lemma A.4 ([Gub04, Thm 1 and Cor. 2]). Let α > 1
3 . Suppose (X,X) is an α

rough path and Y, Z are controlled by X . Then the Riemann-sums defined in (A.5)
converge as the mesh of the partition goes to zero. We call the limit rough integral
and denote it by

∫
Y (x)⊗ dZ(x).

The mapping (Y, Z) 7→
∫
Y ⊗ dZ is bilinear and we have the following bound:∫ y

x
Y (z)⊗ dZ(z) = Y (x)⊗ δZ(x, y) + Y ′(x)X(x, y)Z ′(x)T +Q(x, y),

(A.6)

where the remainder satisfies∣∣Q∣∣
3α
. |RY |2α|Z|α + |Y ′|C0 |X|α|RZ |2α

+ |X|2α
(
|Y ′|α|Z ′|C0 + |Y ′|C0 |Z ′|α

)
+ |X|2α|Y ′|C0 |Z|α. (A.7)

The rough integral also possesses continuity properties with respect to different
rough paths. We refer the reader to [Gub04] for more details. The reason for using
the notation

∫
instead of

∫
is to keep a reminder of the fact that this is really an

abuse of notation since
∫
Y dZ also depends on the choices of Y ′, Z ′, and X.

APPENDIX B. REGULARITY RESULTS

We first quote a variation on a classical regularity statement due to Garsia, Ro-
demich and Rumsey [GRR71]. For R ∈ B0 we will use the notation

|δR|[x,y] := sup
x≤z1<z2<z3≤y

∣∣δR(z1, z2, z3)
∣∣ ,

where δR(z1, z2, z3) := R(z1, z3) − R(z1, z2) − R(z2, z3). The following result
is a special case of [Gub04, Lemma 4] applied to the functions ψ(u) = up and
p(x) = xα+2/p.

Lemma B.1. Let α ≥ 0 and p ≥ 1. For R ∈ B0 we have

|R|α .
(∫

[−π,π]2

|R(x, y)|p

|x− y|αp+2
dx dy

)1/p

+ sup
x<y

|δR|[x,y]

|x− y|α
.

In the special case whereR(x, y) = f(y)−f(x) for some function f , the second
term vanishes and one recovers a version of the Sobolev embedding theorem.

We will now proceed to extend this statement to derive bounds on functions that
depend on several variables. We will use the abbreviated notation

‖F‖Cα1
T (Cα2 ) := ‖F‖Cα1 ([0,T ],Cα2 [−π,π]),

and similarly for ‖R‖Cα1
T (Bα2 ).

Lemma B.2. Let α1, α2 > 0, let γ1, γ2 ∈ [0, 1] and let p ≥ 1 be such that

α1 < γ1λ1 −
1

p
, α2 < γ2λ2 −

1

p
(B.1)

for some λ1, λ2 > 0, λ3 ≥ 0 with λ1 + λ2 + λ3 = 1.
(1) Let F be a random function in C([0, T ], C[−π, π]) satisfying

sup
x∈[−π,π]

E
∣∣F (t, x)− F (s, x)

∣∣p ≤ Up1 |t− s|γ1p , (B.2a)

sup
t∈[0,T ]

E
∣∣F (t, x)− F (t, y)

∣∣p ≤ Up2 |x− y|γ2p , (B.2b)
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sup
x∈[−π,π]
t∈[0,T ]

E
∣∣F (t, x)

∣∣p ≤ Up3 . (B.2c)

Then we have

E
∥∥F∥∥pCα1

T (Cα2 )
.
(

(Uλ1
1 + Uλ1

3 )(Uλ2
2 + Uλ2

3 )Uλ3
3

)p
. (B.3)

(2) Similarly, let R be a random function in C([0, T ],B0[−π, π]) satisfying

sup
x,y∈[−π,π]

E
∣∣R(t, x, y)−R(s;x, y)

∣∣p ≤ Up1 |t− s|γ1p , (B.4a)

sup
t∈[0,T ]

E
∣∣R(t;x, y)

∣∣p ≤ Up2 |x− y|γ2p , (B.4b)

sup
t∈[0,T ]

E
∣∣δR(t)

∣∣p
[x,y]
≤ Up2 |x− y|

γ2p , (B.4c)

sup
x,y∈[−π,π]
t∈[0,T ]

E
∣∣R(t;x, y)

∣∣p ≤ Up3 . (B.4d)

Then we have

E
∥∥R∥∥pCα1

T (Bα2 )
.
(

(Uλ1
1 + Uλ1

3 )(Uλ2
2 + Uλ2

3 )Uλ3
3

)p
. (B.5)

Proof. Let us start by proving (B.3). To this end for fixed 0 ≤ s < t ≤ T we
introduce the notation

Fs,t(x) = F (t, x)− F (s, x).

We have to bound the quantity

E
∥∥F∥∥pCα1

T (Cα2 )
. E

(
sup

0≤s<t≤T

∣∣Fs,t∣∣Cα2

|t− s|α1

)p
+ E

∣∣F (0, ·)
∣∣p
Cα2

. (B.6)

To this end for fixed s, t we can write

E
∣∣Fs,t∣∣pCα2

. E
(

sup
x 6=y∈[−π,π]

∣∣Fs,t(y)− Fs,t(x)
∣∣

|x− y|α2

)p
+ E

∣∣Fs,t(0)
∣∣p. (B.7)

For the first term we get using the Garsia-Rodemich-Rumsey Lemma B.1,

E
(

sup
x,y∈[−π,π]

∣∣Fs,t(y)− Fs,t(x)
∣∣

|x− y|α2

)p
. E

[ ∫
[−π,π]2

|Fs,t(x)− Fs,t(y)|p

|x− y|α2p+2
dx dy

]
=

∫
[−π,π]2

1

|x− y|α2p+2
E
(
Fs,t(x)− Fs,t(y)

)p
dx dy.

(B.8)
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Using Hölder inequality the expectation in the last integral can be bounded by

E
∣∣Fs,t(x)− Fs,t(y)

∣∣p . sup
z∈{x,y}

(
E
∣∣F (t, z)− F (s, z)

∣∣p)λ1

× sup
r∈{s,t}

(
E
∣∣F (r, x)− F (r, y)

∣∣p)λ2

× sup
z∈{x,y}
r∈{s,t}

(
E
∣∣F (r, z)

∣∣p)λ3

≤
(
Up1 |t− s|

pγ1
)λ1
(
Up2 |x− y|

pγ2
)λ2
(
Up3
)λ3 .

(B.9)

Here in the last step we have made use of the bounds (B.2a), (B.2b), and (B.2c).
Similarly, according to the assumption (B.2a) and (B.2c) we get for the second
term on the right-hand side of (B.7)

E
∣∣Fs,t(0)

∣∣p . (Up1 |t− s|pγ1
)λ1
(
Up3
)λ2+λ3 . (B.10)

Therefore, we get

E
∣∣Fs,t∣∣pCα2

.
(
Uλ1

1 Uλ3
3 |t− s|

γ1λ1
)p

×
(
Upλ2

3 + Upλ2
2

∫
[−π,π]2

|x− y|pγ2λ2

|x− y|α2p+2
dx dy

)
.

(B.11)

The integral appearing in (B.11) is finite if and only if α2 satisfies the condition
given in (B.1). So in that case we get

E
∣∣Fs,t∣∣pCγ2

.
(
Uλ1

1 Uλ3
3 |t− s|

γ1λ1
)p(

Uλ2
2 + Uλ2

3

)p
. (B.12)

Then, to get uniform bounds in s, twe apply the Garsia-Rodemich-Rumsey Lemma
to the first term on the right-hand side of (B.6)

E
(

sup
0≤s,t≤T

∣∣Fs,t∣∣Cα2

|t− s|α1

)p
.
∫

[0,T ]2

E
∣∣Fs,t∣∣pCα2

|t− s|α1p+2
ds dt (B.13)

.
(
Uλ1

1 Uλ3
3

)p(
Uλ2

2 + Uλ2
3

)p ∫
[0,T ]2

|t− s|γ1λ1p

|t− s|α1p+2
ds dt.

The integral appearing on the right-hand side of (B.13) is finite if and only if α1

satisfies the condition (B.1). Then we get

E
(

sup
0≤s,t≤T

∣∣Fs,t∣∣Cα2

|t− s|α1

)p
.
(
Uλ1

1 Uλ3
3

)p(
Uλ2

2 + Uλ2
3

)p
.

Finally, to conclude it only remains to bound the term E
∣∣F (0, ·)

∣∣p
Cα2

on the right-
hand side of (B.6). This can be done by observing that

E
∣∣F (0, ·)

∣∣p
Cα2
. E

∣∣F (0, 0)
∣∣p

+

∫
[−π,π]2

1

|x− y|α2p+2
E
∣∣F (0, x)− F (0, y)

∣∣p dx dy
. Up3 + U

(λ1+λ3)p
3 Uλ2p

2 . U (λ1+λ3)p
3 (Uλ2

2 + Uλ2
3 )p.

This finishes the proof of (B.3).
The proof of (B.5) is very similar and we only sketch it. As above we will use

the notation
Rs,t(x, y) = R(t;x, y)−R(s;x, y).
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Similarly to (B.6) we need to derive a bound on

E
∥∥R∥∥pCα1

T (Bα2 )
. E

(
sup

0≤s<t≤T

1

|t− s|α1

∣∣Rs,t∣∣α2

)p
+ E

∣∣R(0; ·, ·)
∣∣p
α2
. (B.14)

For fixed s, t we get using Gubinelli’s version of the Garsia-Rodemich-Rumsey
inequality B.1

E
∣∣Rs,t∣∣pα2

.
∫

[−π,π]2

E
[
|Rs,t(x, y)|p + |δRs,t|p[x,y]

]
|x− y|α2p+2

dx dy . (B.15)

The difference with respect to the case of F is the appearance of the extra term
|δR|[x.y]. On the other side there is no lower order term in the Bα2 norm. Then
using Hölder inequality and the bounds (B.4a), (B.4b), (B.4c) and (B.4d), and then
the integrability condition (B.1) in the same way as in (B.8) and (B.9), the expec-
tation in the right-hand side of (B.15) can be bounded by(

Up1 |t− s|
pγ1
)λ1
(
Up2 |x− y|

pγ2
)λ2
(
Up3
)λ3 .

Plugging this back in (B.14) we get as in (B.13),

E
(

sup
0≤s<t≤T

∣∣Rs,t∣∣α2

|t− s|α1

)p
.
(
Uλ1

1 Uλ3
3

)p · (Uλ2
2 + Uλ2

3

)p ∫
[0,T ]2

|t− s|γ1λ1p

|t− s|α1p+2
ds dt

.
(
Uλ1

1 Uλ3
3

)p · (Uλ2
2 + Uλ2

3

)p
.

Then applying Lemma B.1 once more we can bound the second term appearing on
the right-hand side of (B.14) by

E
∣∣R(0; ·, ·)

∣∣p
α2
.
(
Uλ2

2 Uλ1+λ3
3

)p
.

This finishes the proof of (B.5). �

In a similar spirit is the following Banach space-valued version of Kolmogorov’s
continuity criterion, which is slightly more convenient in some cases.

Lemma B.3. Let (ϕ(t))t∈[0,T ] be a Banach space-valued random field having the
property that for any q ∈ (2,∞) there exists a constant Kq > 0 such that(

E‖ϕ(t)‖q
) 1
q ≤ Kq

(
E‖ϕ(t)‖2

) 1
2 ,(

E‖ϕ(s)− ϕ(t)‖q
) 1
q ≤ Kq

(
E‖ϕ(s)− ϕ(t)‖2

) 1
2 ,

(B.16)

for all s, t ∈ [0, T ]. Furthermore, suppose that the estimate

E‖ϕ(s)− ϕ(t)‖2 ≤ K0|s− t|δ

holds for some K0, δ > 0 and all s, t ∈ [0, T ]. Then, for every p > 0 there exists
C > 0 such that

E sup
t∈[0,T ]

‖ϕ(t)‖p ≤ C
(
K0 + E‖ϕ(0)‖2

) p
2 .
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The conditions (B.16) are satisfied for random fields taking values in a fixed
Gaussian chaos, as follows from the following well-known result, which is a con-
sequence of the hypercontractivity of the Ornstein-Uhlenbeck semigroup due to
Nelson [Nel73]. In order to formulate the result, we introduce some notation.

Let (Ω,F ,P) be a probability space, let H be a separable Hilbert space, and let
ι : H → L2(Ω) be an isometry with the property that ι(h) is centered Gaussian for
all h ∈ H . For a separable Banach space E, the E-valued Gaussian chaos of order
m ≥ 0 is defined as

Hm(E) := lin{Hm(ι(h))⊗ x : ‖h‖ = 1, x ∈ E} ,

where Hm is the Hermite polynomial of degree m and the closure is taken in
L2(Ω,P;E). We set H≤m(E) :=

⋃m
`=0Hl(E). More information on Banach

space-valued Gaussian chaos can be found in [FV10, KW92, Maa10].

Lemma B.4. Let 1 ≤ p <∞ and m ≥ 0. For all F ∈ H≤m(E) we have

‖F‖Lp(Ω,P;E) h ‖F‖L2(Ω,P;E) .
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