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Abstract
We review a series of forthcoming results leading to the construction of a natural
evolution on the space of loops with values in a Riemannian manifold. In
particular, this clarifies the algebraic structure of the renormalisation procedures
appearing in the context of the theory of regularity structures.

1 Introduction

This work is partially motivated by Funaki’s attempt [Fun88, Fun92] to construct a
natural evolution on the space of loops with values in a manifold. Given a compact
smooth Riemannian manifold Mwith metric g, write L∞M for the space of all
smooth loops in M, i.e. simply the space of all smooth functions u : S1 →M. We
also writeLM for the space of all loops, where we only impose that u is continuous.
The energy of a loop u ∈ L∞M is given by

E(u) =
1

2

∫
S1

gu(x)(∂xu(x), ∂xu(x)) dx . (1.1)

The aim of this note is to discuss the construction of the natural Langevin dynamic
associated to E. In other words, one would like to build a Markov process u with
values in LMwith the following two properties:

1. The measure on loops formally given by exp(−2E(u))Du is invariant for
the process u.

2. The evolution is local in the sense that, when written as an evolution equation,
all of the terms appearing in its right hand side are purely local.

The meaning of the first property is not clear a priori since there is of course no
“Lebesgue measure Du on loop space”, but a natural way of interpreting it is as
the Brownian bridge measure on M. See [IM85, AD99] for proofs that natural
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approximations of exp(−2E(u))Du do indeed converge to the Brownian bridge
measure, or to close relatives thereof. The second property is natural in view of the
fact that the integrand appearing in (1.1) depends on u in a local way.

1.1 Derivation of the main equation
Recall that in the finite-dimensional case, given a smooth potential V : Rd → R
with sufficiently “nice” behaviour at infinity, the Langevin dynamic associated to
V is given by the stochastic differential equation

ẋ = −∇V (x) + ξ , (1.2)

where ξ denotes white noise, i.e. the generalised Rd-valued stochastic process with

Eξi(s)ξj(t) = δijδ(t− s) . (1.3)

In order to mimic this, we therefore first need a natural notion of gradient for E.
For this, note that the metric g induces a Riemannian structure ĝ on L∞M in
the following way. An element h ∈ TuL∞M of the tangent space of L∞M at
u ∈ L∞M is given by a function h : S1 → TM is such that h(x) ∈ Tu(x)M for
every x ∈ S1. One then defines a “Riemannian metric” ĝ on TL∞M by setting

ĝu(h, h) =

∫
S1

gu(x)(h(x), h(x)) dx ,

for every h ∈ TuL∞M. As usual, one can then define the gradient ∇E(u) as the
unique element of TuL∞M such that

ĝu(h,∇E(u)) = dE(h) ,

for every h ∈ TuL
∞M, where dEu(h) is the differential of E in the direction

h evaluated at u. This yields a particular case of the Eells-Sampson Laplacian
[ES64].

In view of (1.2), it is then natural to try to define the Langevin equation associated
to (1.1) as

u̇ = −∇E(u) + ξ , (1.4)

where ξ is a suitable “white noise on loop space”. In particular, in the simplest
possible case where M= R (with its standard metric), one obtains the stochastic
heat equation u̇ = ∂2

xu+ ξ, for ξ a space-time white noise, the invariant measure
of which is indeed given by the Brownian bridge. In general however, it is much
less clear what the symbol ξ appearing in (1.4) latter actually means since at any
fixed time ξ should belong to TuLM (or at least a suitable generalisation thereof),
which itself varies with time.
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Note that a characterisation of the noise ξ appearing in (1.2) is that it is the
(generalised) Gaussian process with Cameron-Martin space given by L2(R+,Rd)
endowed with its usual scalar product. This hints at a way of adapting this definition
to the situation at hand. Indeed, for any given smooth function u : R+ → L∞M

(which of course the process u we are interested in really isn’t!), we obtain a scalar
product on the space L2

u of functions h : R+ → TL∞Mwith h(t) ∈ Tu(t)LM by

〈h, h̄〉u =

∫
R

∫
S1

〈h(t, x), h̄(t, x)〉u(t,x) dx dt . (1.5)

then a natural definition for ξ mimicking (1.3) is that it is the (generalised) Gaussian
process with Cameron-Martin space given by L2

u endowed with the scalar product
(1.5). It turns out that this process can be constructed more explicitly as follows.
Take a finite collection {σi}mi=1 of vector fields on Mwith the property that, for
every u ∈M and h, h̄ ∈ TuM, one has the identity

gu(h, h̄) =
m∑
i=1

gu(h, σi(u))gu(h̄, σi(u)) ,

and let {ξi}mi=1 be a collection of independent space-time white noises. Then, one
can verify that the Gaussian process ξ given by ξ(t, x) =

∑m
i=1 σi(u(t, x)) ξi(t, x)

does indeed have as its Cameron-Martin space L2
u with scalar product (1.5).

This suggests that (1.4) should really be interpreted as

u̇ = −∇E(u) +
m∑
i=1

σi(u) ξi .

In local coordinates, this can be written as

u̇α = ∂2
xu

α + Γαβγ(u) ∂xuβ∂xuγ + σαi (u) ξi , (1.6)

where Einstein’s convention of summation over repeated indices is implied and
Γαβγ are the Christoffel symbols for the Levi-Civita connection of (M, g). We thus
derived some kind of multi-component version of the KPZ equation, similar to the
one studied in [FSS13, Spo14], but with both Γ and σ depending on the solution
u itself. This also shows where the problem lies. Since we expect the stationary
measure of (1.6) to be closely related to the Brownian bridge, we expect typical
solutions to be not even 1

2
-Hölder continuous as a function of the x coordinate. As

a consequence, the term ∂xu
β∂xu

γ involves the product of two distributions, so
that it is not clear a priori how to define it. Even if we were to somehow define it,
it still wouldn’t be clear how to multiply the resulting distribution with the very
irregular function Γαβγ(u).
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Similarly, while one would expect to be able to define the terms σαi (u) ξi via Itô
integration, this would certainly lead to problems since Itô integration famously
does not preserve the chain rule, which makes it ill-suited for problems on manifolds.
On the other hand, there appears to be no Stratonovich integration in this context
because the corresponding Itô correction term is infinite, see for example [HP15].

1.2 Main result
In the present work, we take a somewhat pragmatic approach by postulating that
we call a process a “solution” to (1.6) if it is the limit of a natural approximation
procedure. More precisely, we fix a function % ∈ C∞0 (R2) integrating to 1 and we
set

ξ(ε)
i = %(ε) ? ξ , %(ε)(t, x) = ε−3%(t/ε2, x/ε) . (1.7)

It is then natural to ask whether solutions to (1.6) with ξ replaced by ξ(ε) admit
limits as ε → 0. Of course, even if this turns out to be the case, one might lose
uniqueness, but as we will see shortly this can be recovered to some extent. In order
to formulate our result, we impose an additional constraint on the vector fields σi,
namely we assume that

m∑
i=1

∇σiσi = 0 ,

where ∇ denotes the covariant derivative (with respect to the Levi-Civita connec-
tion). An equivalent way of formulating this is that, viewing the σi as first-order
differential operators,

∑
i σ

2
i is equal to the Laplace-Beltrami operator. This should

be viewed as a “centering” condition, which can always be satisfied. For example,
it suffices to consider an isometric embedding of M as a submanifold of Rm and to
then take for σi(u) the orthogonal projection of the ith canonical basis vector of
Rm onto TuM.
The main result on which we report here is a consequence of the more gen-

eral results exposed in [BHZ16, CH16], relying on [Hai14, HQ15], and can be
formulated as follows.

Theorem 1.1 Let u(ε) be the solution to (1.6) with ξi replaced by ξ(ε)
i and with

some fixed Hölder continuous initial condition u0. Then, as ε→ 0, u(ε) converges
in probability to a Markov process u. Furthermore, although u might depend on
the choice of %, the set of possible limits can be parametrised smoothly by finitely
many parameters.

Remark 1.2 If M is a symmetric space, then the limit can be shown to be
independent of %. In general, we believe that the set of possible limits for
approximations of the type discussed here is actually one-dimensional, but we do
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not have a proof of this. We also believe that the law of the limit is independent of
the choice of vector fields σi, but again we have no proof of this.

Remark 1.3 A natural process on loop space leaving invariant the Brownian bridge
measure on a manifold was constructed by a number of authors in the nineties, see
for example [Dri92, DR92, Dri94, ES96, Nor98]. This process is different since,
in the particular case of M= Rd, it would correspond to the Ornstein-Uhlenbeck
process from Malliavin calculus, rather than the stochastic heat equation. In
particular, it is not “local” in the sense that its driving noise has non-trivial spatial
correlations.

To some extent, we can probably learn more from the proof of Theorem 1.1
than from the result itself, although a more systematic study of the properties of
the limiting process, especially in the small noise limit, could be very interesting,
especially in view of [Wit82, Bis08]. We will assume in the sequel that the reader
has at least some familiarity with the theory of regularity structures as developed in
[Hai14] and surveyed for example in [Hai15, CW15]. The proof follows the same
methodology as developed in [Hai14, HQ15, HP15], which can be summarised as
follows:

1. Build a regularity structure T = (T, G+) that is sufficiently rich to be able
to formulate (1.6) as a fixed point problem in some space Dγ,η of sufficiently
regular modelled distributions and build a local solution theory.

2. Exhibit a sufficiently large subgroup G− of the “renormalisation group” R
associated to T as in [Hai14, Def. 8.41].

3. Find a sequence of elementsMε ∈ G− such that the sequence of admissible
models Π̂(ε) obtained by taking the canonical lift Π(ε) of {ξ(ε)

i }mi=1 and acting
on it withMε converges to a limiting model Π̂.

4. Show thatMε can be chosen in such a way that the solution to the fixed point
problem constructed in 1. with model Π̂(ε) is the same (once higher-order
information is discarded) as that of (1.6) with ξi replaced by ξ(ε)

i .
It follows immediately from the main results of [Hai14] that if these four steps can
be carried out successfully, then Theorem 1.1 follows.

Let us now review how these steps can be performed in the context of the problem
at hand. Step 1. in this list is generic and was performed in [Hai14] for a large class
of stochastic PDEs which in particular include (1.6), so we will not dwell on it.
Step 2. is purely algebraic. The problem is that while elements of R are described
by linear maps on T and one can easily make an “educated guess” of a group
G− of such linear maps that is relevant later on, checking whether a given map
belongs to R using the characterisation given in [Hai14] is tedious. In the case of
[Hai14, HQ15, HP15], the relevant groups were of very low dimension, so that this
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verification could easily be done by brute force. In the present situation, even after
taking simplifications arising from symmetries into account, the dimension of G− is
still 71, so that such a brute force verification would only be practical with the help
of a computer. In [BHZ16], we therefore obtain a general result showing that those
linear maps arising from the “educated guesses” alluded to earlier do indeed always
belong toR, and a presentation of this result is the content of Section 2. Step 3. on
the other hand is purely analytical. Again, in the abovementioned previous works,
this step was reduced to moment bounds for a finite number (typically about 5 or 6)
of stochastic processes, and these were then obtained separately for each of these
processes. Again, this could in principle be done here but would be impractical
since the number of processes that would require moment bounds in this case is well
over one hundred. In the article [CH16], we therefore obtain a general estimate that
yields suitable moment bounds for a very large class of processes of this type, thus
bypassing the need to consider these processes separately. This bound is presented
in Section 3. At this stage, without any additional information but exploiting the
x↔ −x symmetry of the equation, one deduces from the general theory of [Hai14]
that there exist finitely many ε-dependent constants c(ε)

j and ε-independent vector
fields hj such that the solutions to

u̇α = ∂2
xu

α + Γαβγ(u) ∂xuβ∂xuγ + c(ε)
j h

α
j (u) + σαi (u) ξ(ε)

i ,

converge to a limit u that is furthermore independent of the mollifier %. In order to
complete the proof of Theorem 1.1, it therefore remains to show that for every j,
either c(ε)

j converges to a finite limit as ε→ 0 or hj = 0. This result is the content
of forthcoming work and will not be reviewed presently.

2 Algebraic aspects

Recall that the regularity structure canonically associated to (1.6) comprises
symbols {Ξi}mi=1, {Xk}k∈N2 representing the driving noises and Taylor monomials
respectively, as well as abstract integration maps {Ik}k∈N2 representing the heat
kernel and its derivatives, and an associative and commutative product. We write
F for the free vector space generated by all formal expressions built from these
operations, modulo the usual identifications, namely that 1 def

= X0 is neutral for the
product, that XkX` = Xk+`, and that Ì(Xk) = 0. Writing |k| = 2k0 + k1 for
k ∈ N2, we assign real-valued degrees to these objects by

|Ξi| = −
3

2
− κ , |Xk| = |k| , |Ì| = 2− |`| , (2.1)

respectively, for κ > 0 a parameter with a sufficiently small value (κ = 1/100 will
do). We will use the shorthand notations I′ = I(0,1),X0 = X (1,0) andX1 = X (0,1).
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The fact that the time coordinate X0 has degree 2 rather than 1 reflects the fact
that we endow space-time with the parabolic scaling, which is consistent with the
scaling used in (1.7).

Of course, not all the formal expressions built from these symbols and operations
are useful for our problem. As in [Hai14], we define collections U, U′ and Wof
formal expressions as the smallest collections such that {Ξi}mi=1 ∪ {Xk}k∈N2 ⊂ W,
such that

τ ∈ W ⇒ I(τ ) ∈ U & I′(τ ) ∈ U′ ,

and such that, for every k ≥ 0, every collection {τi}ki=1 with τi ∈ U for every i,
and every σ1, σ2 ∈ U′, one has

{τ, τΞj, τσ1, τσ1σ2} ⊂ W , τ = τ1 · · · τk .

Note that by construction one has U∪ U′ ⊂ W.
The space T is then defined as the free vector space generated by W, endowed

with the R-grading determined by (2.1). As long as κ < 1
2
, one can verify that,

for every γ ∈ R, the subspace of Tgenerated by elements of degree at most γ is
finite-dimensional. In order to describe G+, we consider the free vector space T̂+

generated by all formal expressions of the type X`
∏N

i=1 Iki(τi) for some N ≥ 0,
some `, ki ∈ N2 and some τi ∈ W. Note that T̂+ is an algebra, which is not the
case for Tsince the product of two expressions in Wdoes not necessarily belong
to W. We then write T+ for the quotient of T̂+ by the ideal J− ⊂ T̂+ generated by
all Ik(τ ) with |Ik(τ )| ≤ 0.

Consider now the linear map ∆+ : T→ T⊗T+ given by

∆+Xi = Xi ⊗ 1 + 1⊗Xi , ∆+Ξi = Ξi ⊗ 1 , (2.2)

and then recursively by

∆+Ik(τ ) = (Ik⊗id)∆+τ+
∑
`∈N2

X`

`!
⊗Ik+`(τ ) , ∆+(τ τ̄ ) = ∆+τ ∆+τ̄ . (2.3)

The sum appearing in this expression is actually finite since all but finitely many of
the summands are zero inT⊗T+. Note also that we can define ∆+ : T+ → T+⊗T+

in formally exactly the same way (and this is compatible with the quotienting
procedure used to produce T+), except that in that case the maps Ik appearing in
(2.3) are interpreted as linear maps from T to T+. The following was shown in
[Hai14, Sec. 8].

Proposition 2.1 There exists an algebra morphism A+ : T+ → T+ so that (T+, ·,
∆+,A+) is a Hopf algebra, and the map ∆+, viewed as a map T→ T⊗T+, turns
T into a right comodule for T+.
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The morphism A+ is defined uniquely by the fact that A+Xi = −Xi and

A+Ik(τ ) = −
∑
`∈N2

(−X)`

`!
M+(Ik+` ⊗A+)∆+τ , (2.4)

where M+ : T+ ⊗T+ → T+ denotes the product.
Denote by G+ the group of characters g : T+ → R endowed with

f ◦ g = (f ⊗ g)∆+ , f−1 = fA+ , (2.5)

as well as the identity element e given by e(1) = 1 and e(τ ) = 0 for symbols τ 6= 1.
The comodule structure of Tfor T+ then yields a natural action of G+ onto Tfrom
the left via

g 7→ Γg , Γg = (id⊗ g)∆+ .

Since furthermore ∆+ preserves total degree and every basis vector in T+ has
strictly positive degree except for 1, this yields a regularity structure T = (T, G+).
As shown in [BHZ16] and although it may not look so at first sight, this construction
is equivalent to the one given in [Hai14, Sec. 8] modulo a change of basis for T+.

Furthermore, given a collection {ξ(ε)
i }mi=1 of smooth functions, we have a canonical

lift to a model (Π(ε), f (ε)) for T in the following way. First, we define a linear map
Π(ε) : T→ C∞ by

Π(ε)Ξi = ξ(ε)
i , Π(ε)τ τ̄ = (Π(ε)τ ) · (Π(ε)τ̄ ) , (2.6a)

Π(ε)Xkτ = xkΠ(ε)τ , Π(ε)Ikτ = DkK ?Π(ε)τ , (2.6b)

where the kernelK is a truncated heat kernel as in [Hai14], ? is convolution in R2,
and xk denotes the function x 7→ xk. In general, we define

Definition 2.2 A linear mapΠ : T→ C∞ is admissible if (2.6b) holds.

Given any admissible linear map Π : T → C∞, there is a natural way of
assigning to it a collection of characters g+

z (Π) : T̂+ → R by setting g+
z (Π)Xi = zi,

g+
z (Π)Ik(τ ) = (DkK ?Πτ )(z), and then extending this multiplicatively. Write
now Â+ : T+ → T̂+ for the unique algebra morphism such that Â+Xi = −Xi and

Â+Ik(τ ) = −
∑
`

(−X)`

`!
π+M̂+(Ik+` ⊗ Â+)∆+τ ,

where this time the Ik are interpreted as maps T→ T̂+ and π+ is the projection in
T̂+ onto the terms of positive homogeneity. (Similarly to above, M̂+ is the product
in T̂+.) Comparing this to the definition of A+ given in (2.4), we see that it is
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virtually identical, with the exception of the appearance of the projection π+ and
the fact that the two operators do not act on the same spaces.

Given Π, we then define Πz : T→ C∞ and fz ∈ G+ by

fz = g+
z (Π)Â+ , Πz = (Π⊗ fz)∆+ , (2.7)

for every z ∈ R2. We also define Γzz̄ : T→ Tby

Γzz̄ = (id⊗ fzA⊗ fz̄)(∆+ ⊗ id)∆+ = (γzz̄ ⊗ id)∆+ , (2.8)

with γzz̄ = (fzA⊗ fz̄)∆+, so that ΠzΓzz̄ = Πz̄ and we henceforth write Z for the
map

Z: Π 7→ (Π,Γ) ,

given by (2.7) and (2.8). It is then possible to verify that ifΠ(ε) is given by (2.6),
then Z(Π(ε)) is indeed an admissible model for T . For a generic admissible linear
map Π : T→ C∞ however this is not necessarily true.
Writing M for the space of admissible models for T that are periodic in the

spatial variable, one can build a solution map S: M ×LαM→ C̄(R+,L
αM)

(here one should take α ∈ (0, 1
2
− κ), LαM denotes the space of α-Hölder

continuous loops in M, and C̄(R+, X) denotes the space of continuous functions
with values in the metric space X , up to some explosion time at which they leave
every bounded region of X) with the following two properties:
• IfΠ(ε) is the canonical lift for some smooth functions ξ(ε)

i , thenS(Z(Π(ε)), u0)
is the maximal solution to (1.6) with initial condition u0 and ξi replaced by
ξεi .
• The map S is locally Lipschitz continuous in both of its arguments.

This shows that if it were the case that Z(Π(ε)) converges to some limiting model in
M as ε→ 0, then Theorem 1.1 would follow at once. Unfortunately, this is simply
not the case. We would therefore like to be able to “tweak” this model in such a
way that it remains an admissible model but has a chance of converging as ε→ 0.

A natural way of “tweaking” Π(ε) is to compose it with some linear map
M : T→ T. This naturally leads to the following question: what are the linear
mapsM which are such that if Z(Π) is an admissible model, then Z(ΠM ) is also
an admissible model? More precisely, we give the following definition.

Definition 2.3 A linear mapM : T→ T is an admissible renormalisation proce-
dure if, for every Π : T→ C∞ such that Z(Π) ∈M , one has Z(ΠM ) ∈M .

In [Hai14, Sec. 8.3], a rather indirect characterisation of renormalisation proce-
duresM is given. The aim of the remainder of this section is to give an explicit
description of a very large class of suchM . In order to describe these maps, we
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recall that the elements of Wcan best be described by rooted trees with additional
decorations in the following way. We have m + 1 types of edges: m of them
represent the symbols Ξi, and they always touch a leaf. The last type represents I
and is decorated with an N2-valued label k, thus representing Ik. Nodes are also
decorated with N2-valued labels, representing factors ofXk. Finally, multiplication
is represented by concatenation at the root. If we draw for nodes, for Ξi (this
looks like a node, but can unambiguously be interpreted as an edge protruding from
the center of the disk since we postulated that these edges always terminate in a
leaf), for I and for I′, we do for example have

I(I′(Ξi)I′(Ξj)) = , I(I′(Ξi)I′(ΞjI(Ξk))) = ,

etc, with the understanding that denotes the relevant Ξi. The expression
I′(XkI′(Ξi)I′(Ξj)) for example would be represented by , but with a decora-
tion k at the center node where the three bold lines meet. This gives a bijection
between canonical basis vectors of F and triples (F, n, e) where F = (VF , EF )
is a rooted trees with edge types in {I,Ξ1, . . . ,Ξm} subject to the restrictions
described above, n : VF → N2, and e : EF → N2.
By analogy with the BPHZ renormalisation procedure [BP57, Hep69, Zim69],

one would like to consider renormalisation maps that consist in “contracting
subtrees”. In order to formalise such an operation, consider a tree T = (VT , ET ),
as well as a subforest A = (VA, EA) ⊂ T , i.e. an arbitrary subgraph of T which
contains no isolated vertices. We thenwriteRAT for the tree obtained by contracting
the connected components of A in T .

We also write T̂− for the free commutative algebra generated by WandJ+ ⊂ T̂−
for the ideal generated by {τ ∈ W : |τ | ≥ 0}. We interpret elements of T̂− as
triples (F, n, e) as above, except that F is now allowed to be a forest. We also define
the space T− by T− = T̂−/J+. With these notation at hand, we then define a map
∆− : T→ T− ⊗Tby setting, for τ = (T, n, e) ∈ W,

∆−τ =
∑
A⊂T

∑
eA,nA

1

eA!

(
n

nA

)
(A, nA + πeA, e�EA) (2.9)

⊗ (RAF,RA(n− nA), e + eA) .

Here, the sum runs over all nA : VA → N2 and eA : ∂(A,F )→ N2, where ∂(A,F )
denotes the edges in EF \ EA that are adjacent to VA. Also, for a function
m : S → Z2 with S a finite set, we write m! =

∏
x∈S m(x)0!m(x)1! and similarly

for the binomial coefficients, with the convention that k! =∞ for k < 0. As before,
the sum appearing here is actually finite because all but finitely many terms have
the first factor vanish in T−.

Our motivation for the definition of ∆− is as follows. Assigning a number to each
τ ∈ Wwith |τ | < 0 is equivalent to choosing an algebra morphism g : T− → R.
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If we ignore for a moment the labels n and e, an operation of the typeMg : T→ T

with
Mgτ = (g ⊗ id)∆−τ , (2.10)

then corresponds to iterating over all ways of contracting subtrees of negative
degree contained in τ and replacing them by the corresponding constant assigned
to it by g. This corresponds to replacing a kernel of possibly several variables by a
multiple of a Dirac delta function forcing all arguments to collapse. The seemingly
complicated combinatorics appearing in (2.9) then encodes the possibility to also
replace it by higher order derivatives of such a delta function in all of its arguments.
Similarly to before, ∆− can also be viewed as a map ∆− : T− → T− ⊗ T− by

extending it multiplicatively from W to all of T−. Writing • for the product in T−
(which has nothing to do with the product we have on W!), the following analogue
to Proposition 2.1 was shown in [BHZ16].

Proposition 2.4 There exists an algebra morphism A− : T− → T− so that (T−, •,
∆−,A−) is a Hopf algebra, and the map ∆−, viewed as a map T→ T− ⊗T, turns
T into a left comodule for T−.

If we write just as before G− for the group of characters g : T− → R, this yields
a right action of G− onto Tby g 7→ Mg withMg as in (2.10). The following is
then the main result of [BHZ16].

Theorem 2.5 For every g ∈ G−, the map Mg is an admissible renormalisation
procedure.

The idea of the proof of this theorem goes as follows. Assume for a moment that
one can also find a map ∆− : T̂+ → T̂− ⊗ T̂+ such that

∆−J− ⊂ J+ ⊗ T̂+ + T̂− ⊗J− ,

with J± defined before (2.2) and (2.9). In particular, ∆− passes through the
quotients to a map T+ → T− ⊗T+, which we assume to satisfy the following.
• On T, one has the identity

M−(∆− ⊗∆−)∆+ = (id⊗∆+)∆− , (2.11)

where
M− : T− ⊗T⊗T− ⊗T+ → T− ⊗T⊗T+ (2.12)

is the map that multiplies the two factors in T−. The same is also true on T+.
• On T+, one has the identity

∆−Â+ = (id⊗ Â+)∆− . (2.13)
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• The actions of G− onto Tand T+ given by (2.10) and the analogous formula
for T+ only increase degrees.

In this case, it is straightforward to verify that, for any g ∈ G−, if we write Mg

as before, setΠg = ΠMg for someΠ such that Z(Π) = (Π,Γ) is a model, write
Z(Πg) = (Πg,Γg), and define γzz̄ and γgzz̄ as in (2.8), one has

γgzz̄ = (g ⊗ γzz̄)∆− , Πg
z = (g ⊗ Πz)∆− .

To show this, one first uses (2.13) to show that f gz = (g ⊗ fz)∆−, where f and
f g are defined from Π and Πg as in (2.7). One then uses (2.11) (on T) to show
that the required identity for Πg

z holds. Finally, one uses (2.11) on T+ to show
that if one views Mg as acting on T+ via (2.10), then its action distributes over
the product defined in (2.5) in the sense that (Mgf ) ◦ (Mgf̄ ) = Mg(f ◦ f̄ ), which
then implies the required identity for γgzz̄. The fact that the action ofMg increases
degrees guarantees that Z(Πg) is again a model, provided that Z(Π) is.
The problem is that (2.11) actually fails in our situation. However, it turns out

that it can still be rescued by the following construction. We look for a larger
space Tex, together with corresponding spaces T̂ex

+ , T̂ex
− and ideals Jex

− ⊂ T̂ex
+ and

Jex
+ ⊂ T̂ex

− , all of them R-graded, such that the following properties hold.
• There are analogous maps to ∆+ and ∆− acting on these “extended” spaces
and such that all of the algebraic relations described above are satisfied,
including (2.11) and (2.13). In particular, one has a map Zex turning
linear maps Tex → C∞ into candidate models on the regularity structure
(Tex, Gex

+ ) defined in formally the same way as above.
• There exists a projection πex : Tex → Twhich is a right inverse for the
inclusion T ↪→ Tex and is such that for any admissibleΠ : T→ C∞,Z(Π)
is a model if and only if Zex(Ππex) is a model.
• There exists an algebra morphism πex

− : Tex
− → T− such that, for every

g ∈ G−, one has
πexM ex

gπex
−

= Mgπ
ex . (2.14)

Once we have constructed these larger spaces, the proof of Theorem 2.5 is
rather straightforward. Fix g ∈ G− and Π such that Z(Π) is a model. Then,
by the second property above, in order to show that Z(ΠMg) is a model, it
suffices to show that Zex(ΠMgπ

ex) is a model. However, by (2.14), we have
Zex(ΠMgπ

ex) = Zex(ΠπexM ex
gπex
−

) and, again by the second property, we already
know thatZex(Ππex) is a model. We conclude by the fact thatM ex

gπex
−
is an admissible

renormalisation map thanks to the argument given above, using the properties
(2.11) and (2.13) for the maps ∆± defined on the extended spaces.
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3 Analytical aspects

At this stage, we have built a rather large group G− acting on our space of formal
expressionsTby admissible renormalisation procedures. Consider now regularised
space-time noises ξ(ε)

i as in (1.7) and defineΠ(ε) as their canonical lift, defined by
(2.6). The following result is a particular instance of the main theorem of [CH16].

Theorem 3.1 There exists a choice of (deterministic) elements gε ∈ G− such that,
settingM ε = Mgε as in (2.10), the sequence of models Z(Π(ε)M ε) converges to a
limiting model in M .

Before we give an idea of the proof of this theorem, let us show how the element
gε determining the suitable renormalisation procedure is constructed. It turns out
that this construction is very similar to the construction of the elements fz ∈ G+

constructed in (2.7) in order to correctly recenter the model, so that its behaviour
around a given space-time point z matches its degree. This is maybe not surprising
since one can also view the renormalisation as some kind of “recentering procedure”
except that this time, instead of insisting that the evaluation of the model at a
given location vanishes for basis vectors of positive homogeneity, we would like
to impose that the expectation of the model vanishes for basis vectors of negative
homogeneity.

Recall equation (2.9) defining∆−. It follows from this definition that the antipode
A− for the Hopf algebra T− is defined for τ = (F, n, e) by the recursion

A−τ = −
∑
A⊂T
A 6=6#

∑
eA,nA

1

eA!

(
n

nA

)
(A, nA+πeA, e�EA)•A−(RAF,RA(n−nA), e+eA) ,

where • is the product in T− as before. As above, the renormalisation procedure
involves a twisted antipode. In order to define this, recall that T− = T̂−/J+ and
write π− : T̂− → T̂− for the projection onto elements of strictly negative degree.
Similarly to above, we then define Â− : T− → T̂− inductively as being the unique
algebra morphism so that, on elements of the type (F, n, e) with F a single tree (so
that it is identified with an element of W), one has

Â−(F, n, e) = −
∑
A⊂T
A6=6#

∑
eA,nA

1

eA!

(
n

nA

)
π−((A, nA + πeA, e�EA) • Â−(RAF,RA(n− nA), e + eA)) .

We furthermore note that any random linear map Π : T → C∞ with finite
expectation gives rise to a character g−(Π) on T̂− by simply setting

g−(Π)τ = E(Πτ )(0) , τ ∈ W ,
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and then extending it multiplicatively. In this setting, at least for instances of Π
satisfying a suitable kind of stationarity, we then claim that the “correct” choice of
character gε appearing in Theorem 3.1 is given by

gε = g−(Π(ε))Â− .

Comparing this and (2.10) to (2.7), we see that the renormalisation procedure
required to make our models converge to a finite limit is indeed formally identical
(modulo changing + / evaluation into − / expectation) to the recentering procedure
discussed before.

Combining these constructions with the results of [Hai14, Sec. 10], one concludes
that Theorem 3.1 essentially follows as soon as one has an estimate of the type

E〈(g−(Π(ε))Â− ⊗Π(ε) ⊗ g+
z (Π(ε))Â+)M−(∆− ⊗∆−)∆+τ, ϕλz 〉2 . λ2|τ | , (3.1)

for every τ ∈ Wwith |τ | < 0, where |τ | denotes the degree of τ as before, M− is
as in (2.12), 〈·, ·〉 is the usual scalar product in L2(R2), and ϕλz is the translate and
rescaling of a test function ϕ ∈ C∞0 with sufficiently many derivatives bounded by
1 and with support in the ball of radius 1 around the origin as in [Hai15, Def. 3.3].

From an algebraic perspective, the definitions of ∆− and Â− are very strongly
reminiscent of the Hopf-algebraic formulation of Zimmermann’s forest formula
[Kre98], which was further explored in [CK00, CK01]. More precisely, our space
T̂− is analogous to the space A in [Kre98], the quotiented space T− is analogous to
the space A/ ∼, etc., so (3.1) is really a form of BPHZ theorem.

The difference is threefold. First, our basic combinatorial structure is described
by collections of trees rather than Feynman diagrams. These can then be interpreted
as generating Feynman diagrams when taking expectations, by contracting leaves
according to Wick’s theorem. (Or the cumulant formula if one considers a Π(ε)

which is not obtained from the lift of a Gaussian process.) Second, the result in
[CH16] applies to very large class of kernels K, provided that they exhibit the
“correct” behaviour near the origin and, unlike most related results that can be found
in the literature, it doesn’t rely on the driving noise being Gaussian. Finally, and this
is really the main difference, we see both “positive” and “negative” renormalisations
appearing in (3.1), while the usual calculations performed in the context of QFT
only involve negative renormalisation. The purpose of the latter is to ensure that we
obtain finite quantities in the limit ε→ 0. The former on the other hand is crucial
in order to obtain the correct power of λ in the right hand side of (3.1).
Let us explain the main ingredients appearing in the proof of (3.1). First, by

translation invariance, one can set z = 0. Using Wick’s formula, the left hand side
of (3.1) can then be written, for some N > 2, as

Iλ,ετ =

∫
ϕλ(z1)ϕλ(z2)K(ε)

τ (z1, . . . , zN ) dz1 · · · dzN , zi ∈ R2 ,
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for some smooth kernel K(ε)
τ which, as ε→ 0, converges to a smooth limit Kτ on

the configuration space CN = {(z1, . . . , zN ) : zi 6= zj ∀ i 6= j}, but exhibits quite
singular behaviour on the “big diagonal” where two or more arguments coincide.
In order to estimate an integral of this type, we use the following construction

reminiscent of the Fulton-MacPherson compactification of CN and already used
in [HS14, HQ15]. First, note that if Λλ ∈ (R2)N denotes the support of z 7→
ϕλ(z1)ϕλ(z2), T is a countable index set, and {Dσ}σ∈T are a collection of bounded
regions exhausting all of (R2)N , an integral as above can trivially be estimated by

|Iλ,ετ | . λ−6
∑
σ∈T

1Dσ∩Λλ 6= 6#|Dσ| sup
z∈Dσ
|K(ε)

τ (z)| , (3.2)

where |D| denotes the Lebesgue measure of D and the factor λ−6 comes from the
parabolic rescaling of ϕλ. Such a bound is close to optimal if the regions Dσ can
be chosen in such a way that the integrand K(ε)

τ does not vary much over them.
A good index set T turns out to be given by the set of rooted binary trees

T = (VT , ET ) withN +1 leaves endowed with an integer label n(x) at each interior
vertex x ∈ VT . We now build a map S: CN → T such that the sets Dσ are then
given by Dσ = S−1(σ). Given z ∈ CN , S(z) is built by simultaneously looking at
a sequence Pk of partitions of [N ] = {0, . . . , N} and (Tk, nk) = (Vk, Ek, nk) of
labelled graphs (with labels inZ∪{+∞}) as follows. We setP0 = {{0}, . . . , {N}},
V0 = [N ], E0 = 6#, and n0(x) = +∞ for x ∈ V0. Then, given Pj and (Tj, nj),
we define the next element in the sequence as follows. If Pj = {[N ]}, then the
construction stops and we set S(z) = (Tj, nj). Otherwise, for every A ∈ Pj ,
consider the set zA = {zi}i∈A (where we set z0 = 0) and consider the pair
(A,B) such that d(zA, zB) ≤ d(zC , zD) for every C,D ∈ Pj , where d denotes the
Hausdorff distance between compact sets. Since the points zi are all distinct, the
pair (A,B) is unique. One then sets

Pj+1 = (Pj \ {A,B}) ∪ {A ∪B} ,
Vj+1 = Vj ∪ {A ∪B} , Ej+1 = Ej ∪ {(A ∪B,A), (A ∪B,B)} .

We furthermore define nj+1 to be equal to nj on Vj and nj+1(A∪B) to be the only
integer such that

d(zA, zB) ≤ 2−nj+1(A∪B) < 2d(zA, zB) .

As a consequence of the properties of the Hausdorff distance, the labelled trees
produced in this way have the property that if we partially order T in the natural way
so that the root [N ] is minimal, it is always the case that x ≤ y implies n(x) ≤ n(y).
The following lemma is crucial.
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Lemma 3.2 For z ∈ CN , let (T, n) = S(z). Then, there exist constants c and C
depending only on N such that, for any i, j ∈ [N ], and writing i ∧ j = sup{x :
x ≤ {i} & x ≤ {j}} for the most recent common ancestor of the leaves {i} and
{j} in T , one has

c2−nj+1(i∧j) ≤ d(zi, zj) ≤ C2−nj+1(i∧j) . (3.3)

(Again with the convention z0 = 0.) Furthermore, for σ = (V,E, n), one has the
upper bound

|Dσ| .
∏
x∈V◦

2−dn(x) , (3.4)

uniformly over σ ∈ T, where V◦ ⊂ V denotes the set of those vertices that are not
leaves in T .

In other words, modulo constant factors, the distance between any two points
of a given configuration z is completely determined by S(z). Furthermore, the
tree structure provides a very efficient way of encoding the various constraints
given by the triangle inequality. The aim then is to obtain, for any such binary tree
T = (V,E) a function η̄T : V → R, such that the integrandK(ε)

τ can be bounded by

|K(ε)
τ (z)| .

∏
x∈V◦

2−η̄T (x)n(x) , (3.5)

uniformly in ε. Combining this with (3.4) and (3.3), one then obtains a bound of
the type

|Iλ,ετ | . λ−6
∑

T=(V,E)

∑
n

∏
x∈V◦

2−ηT (x)n(x) , ηT (x) = η̄T (x) + d , (3.6)

where the inner sum runs over all weakly increasing maps n : V◦ → Z such that
furthermore

2−n(0∧1∧2) ≤ Cλ , (3.7)
for some fixed C > 1. (Here i∧ j is as in Lemma 3.2.) This encodes the constraint
that one only considers terms in the sum such that Dσ ∩ Λλ 6= 6#. It is relatively
straightforward to verify recursively that one has indeed a bound of the type (3.5)
so that (3.6) holds with functions ηT satisfying

∑
x∈V◦ ηT (x) = |τ |+ 6. It therefore

remains to obtain conditions on such functions ηT guaranteeing that a sum of the
type appearing in (3.6) is bounded by Cλ

∑
x∈V◦ ηT (x) for some fixed C.

This is the content of the following lemma.

Lemma 3.3 Let T = (V,E) be a rooted binary tree with leaves equal to [N ]
with N > 2 and let η : V◦ → R. Set x? = 0 ∧ 1 ∧ 2 ∈ V◦ and let V? denote the
nodes x ∈ V◦ lying on the path from x? to the root, but not the root itself. Assume
furthermore that the following two conditions hold.
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1. For every x ∈ V◦ one has
∑

y≥x η(y) > 0.
2. For every x ∈ V? one has

∑
y 6≥x η(y) < 0.

Then, there exists a constant C such that∑
n

∏
x∈V◦

2η(x)n(x) ≤ Cλ−
∑
x∈V◦ η(x) ,

where the sum runs over all increasing n : V◦ → Z satisfying (3.7).

The proof of this lemma is relatively straightforward and can be found for example
in [HQ15]. The two conditions appearing here are generalisations of the standard
conditions on the integrability of a function with power law behaviour at the origin
(corresponding to the first condition) and at infinity (corresponding to the second
condition). The problem in our case is that if we simply replaced the complicated
expression appearing in the left hand side of (3.1) by E〈Π(ε)τ, ϕλz 〉2, then although
(3.5) and (3.6) would still be satisfied for some ηT with

∑
x∈V◦ ηT (x) = |τ | + 6,

both conditions of Lemma 3.3 would fail for a typical τ ∈ W.
The purpose of the two renormalisation procedures encoded by ∆− and ∆+

appearing in (3.1) is to allow us to obtain an improved bound which involves a
function ηT that does satisfy the conditions of Lemma 3.3. In this procedure,
the purpose of the “negative renormalisation” is precisely to ensure that the first
condition is satisfied (thus removing small-scale divergences), while the purpose of
the “positive renormalisation” is to ensure that the second condition is satisfied,
guaranteeing integrability at large scales. The combinatorics of overlapping
divergencies can in particular be unraveled by adapting tools from [FMRS85].
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