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Abstract
We propose a modification, based on the RESTART (repetitive simulation trials after
reaching thresholds) and DPR (dynamics probability redistribution) rare event simu-
lation algorithms, of the standard diffusion Monte Carlo (DMC) algorithm. The new
algorithm has a lower variance per workload, regardless of the regime considered. In
particular, it makes it feasible to use DMC in situations where the “naı̈ve” generalisation
of the standard algorithm would be impractical, due to an exponential explosion of
its variance. We numerically demonstrate the effectiveness of the new algorithm on
a standard rare event simulation problem (probability of an unlikely transition in a
Lennard-Jones cluster), as well as a high-frequency data assimilation problem.
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1 Introduction

Diffusion Monte Carlo (DMC) is a well established method popularized within the
Quantum Monte Carlo (QMC) community to compute the ground state energy (the
lowest eigenvalue) of the Hamiltonian operator

Hψ = −∆ψ + V ψ

as well as averages with respect to the square of the corresponding eigenfunction
[Kal62, GS71, And75, CA80, KL11]. It is based on the fact that the Feynman–Kac
formula ∫

f (x)ψ(x, t)dx = E
(
f (Bt) exp

(
−
∫ t

0

V (Bs)ds
))

, (1.1)
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connects the solution, ψ(x, t), of the partial differential equation

∂tψ = −Hψ
ψ(0, ·) = δ0 , (1.2)

to expectations of a standard Brownian motion Bt starting at x. For large times t,
suitably normalised integrals against the solution of (1.2) approximate normalised
integrals against the ground state eigenfunction ofH.

As we will see in the next section, DMC is an extremely flexible tool with many
potential applications going well beyond quantum Monte Carlo. In fact, the basic
operational principles of DMC, as described in this article, can be traced back at least
to what would today be called a rare event simulation scheme introduced in [HM54]
and [RR55]. In the data assimilation context a popular variant of DMC, sequential
importance sampling (see e.g. [dDG05, Liu02]), computes normalised expectations of
the form

E
(
f (yt) exp

(
−
∑
tk≤t V (k, ytk )

))
E exp

(
−
∑
tk≤t V (k, ytk )

) ,

where the V (k, ·) are functions encoding, for example, the likelihood of sequentially
arriving observations (at times t1 < t2 < t3 < · · · ) given the state of some Markov
process yt. A central component of a sequential importance sampling scheme is a
so-called “resampling” step (see e.g. [dDG05, Liu02]) in which copies of a system are
weighted by the ratio of two densities and then resampled to produce an unweighted
set of samples. Some popular resampling algorithms are adaptations of the generalised
version of DMC that we will present below in Algorithm DMC (e.g. residual resampling
as described in [Liu02]). Our results suggest that sequential importance sampling
schemes could be improved (in some cases dramatically) by building the resampling
step from our modification of DMC in Algorithm TDMC.

One can imagine a wide range of potential uses of DMC. For example, we will show
that the generalisation of DMC in Algorithm DMC below could potentially be used to
compute approximations to quantities of the form

E
(
f (yt) exp

(
−
∫ t

0

V (yt)dyt
))

,

or
E(f (yt) exp (−V (yt))) . (1.3)

where yt is a diffusion. Continuous time data assimilation requires the approximation of
expectations similar to first type above while, when applied to computing expectations
of the type in (1.3), DMC becomes a rare event simulation technique (see e.g. [HM54,
RR55, AFRtW06, JDMD06]), i.e. a tool for efficiently generating samples of extremely
low probability events and computing their probabilities. Such tools can be used to
compute the probability or frequency of dramatic fluctuations in a stochastic process.
Those fluctuations might, for example, characterise a reaction in a chemical system or a
failure event in an electronic device (see e.g. [FS96, Buc04]).

The mathematical properties of DMC have been explored in great detail (see e.g.
[DM04]). Particularly relevant to our work is the thesis [Rou06] which studies the
continuous time limit of DMC in the quantum Monte Carlo context and introduces
schemes for that setting that bear some resemblance to our modified scheme Algo-
rithm TDMC. The initial motivation for the present work is the observation that, in
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some of the most interesting settings, the natural generalisation of DMC introduced in
Algorithm DMC exhibits a dramatic instability. We show that this instability can be
corrected by a slight enlargement of the state space to include a parameter dictating
which part of the state space a sample is allowed to visit. The resulting method is
introduced in Algorithm TDMC in Section 2 below. This modification is inspired by the
RESTART and DPR rare event simulation algorithms [VAVA91, HT99, DD11]. The
RESTART and DPR algorithms bias an underlying Markov process by splitting the
trajectory of the process into multiple trajectories and then appropriately reweighing the
resulting trajectories. The splitting occurs every time the process moves from one set to
another in a predefined partition of the state space. The key feature of the algorithms
that we borrow is a restriction placed on the trajectories resulting from a splitting event.
The new trajectories are only allowed to explore a certain region of state space and are
eliminated when they exit this region. Our modification of DMC is similar, except that
our branching rule is not necessarily based on a fixed partition of state space.

In Section 3, we demonstrate the stability and utility of the new method in two
applications. In the first one, we use the method to compute the probability of very
unlikely transitions in a small cluster of Lennard-Jones particles. In the second example
we show that the method can be used to efficiently assimilate high frequency observa-
tional data from a chaotic diffusion. In addition to these computational examples, we
provide an in-depth mathematical study of the new scheme (Algorithm TDMC). We
show that regardless of parameter regime and even underlying dynamics (i.e. yt need
not be related to a diffusion) the estimator generated by the new algorithm has lower
variance per workload than the DMC estimator. In a companion article [HW14], by
focusing on a particular asymptotic regime (small time-discretisation parameter) we
are also able to rigorously establish several dramatic results concerning the stability
of Algorithm TDMC in settings in which the straightforward generalisation of DMC
is unstable. In particular, in that work we provide a characterization and proof of
convergence in the continuous time limit to a well-behaved limiting Markov process
which we call the Brownian fan.

1.1 Notations
In our description and discussion of the methods below we will use the standard notation
bac = max{i ∈ Z : i ≤ a}.
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2 The algorithm and a summary of our main results

With the potential term V removed, the PDE (1.2) is simply the familiar Fokker-Planck
(or forward Kolmogorov) equation and one can of course approximate (1.1) (with
V = 0) by

f̂t =
1

M

M∑
j=1

f (w(j)
t ) ,
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where the w(j) are M independent realisations of a Brownian motion. The probabilistic
interpretation of the source term V ψ in the PDE is that it is responsible for the killing
and creation of sample trajectories of w. In practice one cannot exactly compute the
integral appearing in the exponent in (1.1). Common practice (assuming that tk = kε )
is to replace the integral by the approximation

∫ t

0

V (ws) ds ≈
bt/εc−1∑
k=0

1

2

(
V (wtk+1

) + V (wtk )
)
ε ,

where ε > 0 is a small time-discretisation parameter. DMC then approximates

〈f〉t = E
(
f (wt) exp

(
−
bt/εc−1∑
k=0

1

2

(
V (wtk+1

) + V (wtk )
)
ε
))

. (2.1)

The version of DMC that we state below in Algorithm DMC is a slight generalisation of
the standard algorithm and approximates

〈f〉t = E
(
f (yt) exp

(
−
∑
tk≤t

χ(ytk , ytk+1
)
))

, (2.2)

where yt is any Markov process and χ is any function of two variables. Strictly
for convenience we will assume that the time t is among the discretization points
t0, t1, t2, . . . . The DMC algorithm proceeds as follows:

Algorithm DMC Slightly generalised DMC

1. Begin with M copies x(j)
0 = x0 and k = 0.

2. At step k there are Ntk samples x(j)
tk
. Evolve each of these

tk+1−tk units of time under the underlying dynamics to generate

Ntk values

x̃(j)
tk+1
∼ P(ytk+1

∈ dx | ytk = x(j)
tk

).

3. For each j = 1, . . . , Ntk, let

P (j) = e
−χ(x(j)

tk
,x̃(j)
tk+1

)

and set

N (j) = bP (j) + u(j)c ,

where the u(j) are independent U(0, 1) random variables.

4. For j = 1, . . . , Ntk, and for i = 1, . . . , N (j) set

x(j,i)
tk+1

= x̃(j)
tk+1

.

5. Finally, set Ntk+1
=
∑Nkε
j=1N

(j) and list the Ntk+1
vectors {x(j,i)

tk+1
}

as {x(j)
tk+1
}
Ntk+1

j=1 .
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6. At time t, produce the estimate

f̂t =
1

M

Nt∑
j=1

f (x(j)
t ) .

Here, the notation U(a, b) was used to refer to the law of a random variable that is
uniformly distributed in the interval (a, b). Below we will refer to the x(j)

t as particles
and to a collection of particles as an ensemble.

Remark 2.1 If the goal is to compute the “conditional” quantity 〈f〉t/〈1〉t then one
can simply redefine P (j) in Step 3 by

P (j) =
e
−χ(x(j)

tk
,x̃(j)
tk+1

)

1
Nt

∑Nt
l=1 e

−χ(x(l)
tk
,x̃(l)
tk+1

)
.

With this choice the copy number Nt becomes a Martingale and will need to be con-
trolled at the cost of some ensemble size dependent bias. The value of Nt can be
maintained exactly at some predefined value M by uniformly upsampling or down-
sampling the ensemble after each iteration. Alternatively one can hold Nt near M by
multiplying this P (j) by (M/Nt)α for some α > 0 as we do in Section 3.2.

Algorithm DMC results in an unbiased estimate of (2.2), i.e.

E1f̂t = 〈f〉t .

For reasonable choices of χ and f (e.g. suptk≤t〈1〉tk <∞ and 〈|f |〉t <∞) the law of
large numbers then implies that

lim
M→∞

f̂t = 〈f〉t.

We use the symbol E1 for expectations under the rules of Algorithm DMC to distinguish
them for expectations under the rules of our modified algorithm (Algorithm TDMC
below) which will simply be denoted by E.

Of course if we set

χ(x, y) =
1

2
(V (x) + V (y))(tk+1 − tk) , (2.3)

then we are back to the quantum Monte Carlo setting. We might, however, choose

χ(x, y) = V (x)(y − x) , (2.4)

which, if yt approximates a diffusion (which we also denote by yt), formally corresponds
to an approximation of

〈f〉t = E
(
f (yt) exp

(
−
∫ t

0

V (ys)dys
))

,

or
χ(x, y) = V (y)− V (x) , (2.5)
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corresponding to an approximation of

〈f〉t = eV (x0)E
(
f (yt)e−V (yt)

)
.

The generalisation of DMC resulting from various choices of χ is not frivolous.
In Section 3 we will see that, with χ of form (2.5), one can design potentially very
useful rare event and particle filtering schemes. Unfortunately, when yt is a diffusion
or a discretisation of a diffusion, the resulting Algorithms behave extremely poorly
in the small discretisation size limit (tk+1 − tk → 0). The reason is simple: on a
time interval [tk, tk+1), a typical step of Brownian motion moves by O(

√
tk+1 − tk).

Therefore, unlike for (2.3), for both (2.4) and (2.5), the typical size of χ(x, y) is of order√
tk+1 − tk. As a consequence, at each step, the probability that a particle either dies or

spawns a child is itself of order
√
tk+1 − tk. Without modification, as tk+1 − tk → 0,

the fluctuations in the number of particles, Nt, will grow wildly and the process will
die out before a time of order 1 with higher and higher probability, thus causing the
variance of our estimator to explode. This phenomenon is already evident in the simple
case of a Brownian motion,

y(k+1)ε = ykε +
√
εξk+1 , X(0) = 0 , (2.6)

with
χ(x, y) = y − x (2.7)

(a choice consistent with either (2.4) or (2.5)). Here the ξk are independent mean 0 and
variance 1 Gaussian random variables. This example (with more general ξk) is analysed
in great depth in the companion paper [HW14].

Figure 2 demonstrates the dramatic failure of the straightforward generalisation
of DMC in Algorithm DMC on this simple example. There we plot the logarithm of
the second moment of the number of particles in the ensemble at time 1 (i.e. after
1/ε steps of the algorithm) versus − log ε for several values of ε. Clearly, E

(
N2

1

)
is

growing rapidly as ε decreases. Indeed, for small enough ε and starting with a single
initial copy at the origin, one can exploit the conditional independence of offspring
in Algorithm DMC to show that for the simple random walk example, E

[
N2
kε

]
≥

E
[
N2

(k−1)ε

]
+α
√
ε for a positive constant α. After iterating ε−1 times, this bound gives

exactly the growth of E
[
N2

1

]
illustrated in Figure 2 (i.e. O

(
ε−1/2

)
). This instability

can be removed by carrying out the branching steps (Steps 3-5) only every O(1) units
of time instead of every ε units of time and accumulating weights for the particles in the
intervening time intervals. However, this small ε regime cleanly highlights a serious
(and unnecessary) deficiency in DMC. In contrast to Algorithm DMC, the method that
we will describe in Algorithm TDMC below, appears to be stable as ε vanishes (a
property confirmed in [HW14]).

Our modification of DMC described in Algorithm TDMC below not only suppresses
the small ε instability just described, but results in a more robust and efficient algorithm
in any context. Inspired by the RESTART and DPR algorithms studied in [VAVA91,
HT99, DD11] we append to each particle a “ticket” θ limiting the region that the particle
is allowed to visit. Samples are eliminated when and only when they violate their ticket
values. As a consequence, particles typically survive for a much longer time, and in
many situations there is a well-defined limiting algorithm when ε→ 0. More precisely,
the modified algorithm proceeds as follows:

Algorithm TDMC Ticketed DMC
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Figure 1: Second moment of N versus stepsize.

1. Begin with M copies x(j)
0 = x0. For each j = 1, . . . ,M choose an

independent random variable θ(j)
0 ∼ U(0, 1).

2. At step k there are Ntk samples (x(j)
tk
, θ(j)
tk

). Evolve each of the

x(j)
tk

one step to generate Ntk values

x̃(j)
tk
∼ P(ytk+1

∈ dx | ytk = x(j)
tk

).

3. For each j = 1, . . . , Ntk, let

P (j) = e
−χ(x(j)

tk
,x̃(j)
tk+1

)
. (2.8)

If P (j) < θ(j)
tk

then set

N (j) = 0.

If P (j) ≥ θ(j)
tk

then set

N (j) = max{bP (j) + u(j)c, 1} , (2.9)

where u(j) are independent U(0, 1) random variables.

4. For j = 1, . . . , Ntk, if N (j) > 0 set

x(j,1)
tk+1

= x̃(j)
tk+1

and θ(j,1)
tk+1

=
θ(j)
tk

P (j)

and for i = 2, . . . , N (j)

x(j,i)
tk+1

= x̃(j)
tk+1

and θ(j,i)
tk+1
∼ U((P (j))−1, 1).

5. Finally set Ntk+1
=
∑Ntk
j=1N

(j) and list the Ntk+1
vectors {x(j,i)

tk+1
}

as {x(j)
tk+1
}
Ntk+1

j=1 .
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6. At time t produce the estimate

f̂t =
1

M

Nt∑
j=1

f (x(j)
t ) .

Remark 2.2 Both here and in Algorithm DMC, we could have replaced the random
variable bP (j) + u(j)c by any integer-valued random variable with mean P (j). The
choice given here is natural, since it is the one that minimises the variance. From a
mathematical perspective, the analysis would have been slightly easier if we chose
instead to use Poisson distributed random variables.

We should first establish that this new algorithm “does the job” in the sense that if
the steps in Algorithm DMC are replaced by those in Algorithm TDMC, the resulting
ensemble of particles still produces an unbiased estimate of the quantity 〈f〉t defined in
(2.2). This is the subject of Theorem 4.1 below which establishes that, indeed, for any
bounded test function f and any choice of χ,

Ef̂t = 〈f〉t . (2.10)

We have already mentioned that a companion article [HW14] is devoted to showing
that our modification of DMC, Algorithm TDMC, does not suffer the small ε instability
observed in Algorithm DMC. In that asymptotic regime Algorithm TDMC dramatically
outperforms the straightforward generalisation of DMC in Algorithm DMC. However,
a surprising side-effect of our modification is that Algorithm TDMC is superior to
Algorithm DMC in all contexts. In this article we compare Algorithms DMC and
TDMC independently of a specific regime (discretisation stepsize, choice of χ, etc).

The key tool in carrying out this comparison is Lemma 4.4 in Section 4. That lemma
establishes that by simply randomising all tickets uniformly between 0 and 1 at each
step of Algorithm TDMC, one obtains a process that, in law, is identical to the one
generated by Algorithm DMC. With this observation in hand we are able to establish
in Theorem 4.3 that the estimator produced by Algorithm TDMC always has lower
variance than Algorithm DMC, i.e. we prove that

var f̂t ≤ var1 f̂t , (2.11)

holds for any bounded test function f, any underlying Markov chain Y , and any choice
of χ. In expression (2.11) we have again distinguished expectations under the rules of
Algorithm DMC from all other expectations by a superscript 1.

In comparing Algorithms DMC and TDMC, it is not enough to simply compare the
variances of the corresponding estimators: one should also compare their respective
costs. Since the dominant contribution to any cost difference in the two algorithms will
come from differences in the number of times one must evolve a particle from one time
step to the next we compare the expectations of workload

Wt =
∑
tk≤t

Ntk

under the two rules. However, by (2.10) with f ≡ 1 we see that

E1Wt = EWt = M
∑
tk≤t

E exp
(
−
k−1∑
j=0

χ(ytj , ytj+1 )
)

,
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so that the expected cost of both algorithms is the same. In fact, the proof of Theorem 4.3
can be modified slightly to show that the variance of the workload of Algorithm TDMC
is always lower than the variance of workload of Algorithm DMC. These remarks leave
little room for ambiguity. Algorithm TDMC is more efficient than Algorithm DMC in
any setting.

The existence of a continuous-time limit and other robust, small-discretisation
parameter characteristics established in [HW14] along with the other features of Algo-
rithm TDMC mentioned above, strongly suggest that Algorithm TDMC has significant
potential as a flexible and efficient computational tool. In the next section we provide
numerical evidence to that effect.

3 Two examples

In the following subsections we apply our modified DMC algorithm to two simple
problems. In Section 3.1 we consider the approximation of a small probability related
to the escape of a diffusion from a deep potential well. We will use Algorithm TDMC
to bias simulation of the diffusion so that an otherwise rare event (escape from the
potential well) becomes common (and then reweight appropriately). We will see that
extremely low probability events can be computed with reasonably low relative error. In
Section 3.2 we demonstrate the performance of Algorithm TDMC in one of DMCs most
common application contexts, particle filtering. We will reconstruct a hidden trajectory
of a diffusion, given noisy but very frequent observations. Our comparison shows that
the reconstruction produced by the modified method is dramatically more accurate than
the reconstruction produced by straightforward generalisation of DMC.

3.1 Rare event simulation
In Quantum Monte Carlo applications, the function χ is (for the most part) specified by
the potential V as in (2.3). In other applications however, there may be more freedom in
the choice of χ to achieve some specific goal. As already mentioned earlier, the choice
χ(x, y) = V (y)− V (x) turns Algorithm TDMC into an estimator of

〈f〉t = eV (x0)E
(
f (yt)e−V (yt)

)
.

The design of a “good” choice of V will be discussed below. By redefining f we find
that e−V (x0) êV f t is an unbiased estimate of E(f (yt)), i.e.

e−V (x0) E
Nt∑
j=1

eV (x(j)
t )f (x(j)

t ) = Ef (yt) ,

where the samples x(j)
t are generated as in Algorithm TDMC. This suggests choosing

V to minimise the variance of êV f t. Intuitively this involves choosing V to be smaller
in regions where f is significant. The branching step in Algorithm TDMC will create
more copies when V decreases, focusing computational resources in regions where V is
small.

As an example, consider the overdamped Langevin dynamics

dyt = −∇U (yt)dt+
√

2γdBt

where y represents the positions of seven two-dimensional particles (i.e. y ∈ R14) and

U (x) =
∑
i<j

4
(
‖xi − xj‖−12 − ‖xi − xj‖−6

)
.
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Figure 2: (Left) The initial condition xA to generate the results in Table 1. (Right) A
typical sample of the event y2 ∈ B.

In this formula xi represents the position of the ith particle (i.e. xi ∈ R2). In various
forms this Lennard-Jones cluster is a standard non-trivial test problem in rare event
simulation (see [DBC98]).

After discretising this process by the Euler scheme

y(k+1)ε = ykε −∇U (ykε) ε+
√

2γε ξk+1

with a stepsize of ε = 10−4 we apply Algorithm TDMC with

χ(x, y) = V (y)− V (x), V (x) =
λ

kT
min
i≥2

{∥∥∥∥xi − 1

7

∑
j

xj

∥∥∥∥}.
The properties of the Euler discretisation in the context of rare event simulation are
discussed in [VEW14].

Our goal is to compute

PxA(y2 ∈ B), B = {x : V (x) < 0.1} ,

where our initial configuration is given by xA1 = (0, 0) and for j = 2, 3, . . . , 7,

xAj =
(

cos
jπ

3
, sin

jπ

3

)
(see Figure 2). Starting from initial configuration x0 = xA, the particle initially at the
centre of the cluster (xA1 ) will typically remain there for a length of time that increases
exponentially in γ−1. We are roughly computing the probability that, in 2 units of time,
the particle at the centre of the cluster exchanges positions with one of the particles in
the outer shell. This probability decreases exponentially in γ−1 as γ → 0. In this case

f (x) = 1B(x) ,

where 1B is the indicator function of B. In our simulations, λ is chosen so that the
expected number of particles ending in B, Ef̂2, is (very) roughly 1. The results for
several values of the temperature γ are displayed in Table 1.

The workload referenced in Table 1 is the (scaled) expected total number of ∇U
evaluations per sample, i.e. the expectation of

εW2 = ε

2/ε∑
k=1

Nkε.

Note that when V ≡ 0, Algorithm TDMC reduces to straightforward (brute force)
simulation and the workload is exactly 2. Increasing λ results in the creation of more
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γ λ estimate workload 1
2

(
variance
×workload

)
brute force
variance

0.4 1.9 1.125×10−2 12.90 4.732×10−3 1.112×10−2

0.2 1.3 2.340×10−3 11.64 2.344×10−4 2.335×10−3

0.1 1 7.723×10−5 13.87 7.473×10−7 7.722×10−5

0.05 0.85 9.290×10−8 30.84 1.002×10−11 9.290×10−8

0.025 0.8 1.129×10−13 204.8 1.311×10−21 1.129×10−13

Table 1: Performance of Algorithm TDMC on the Lennard-Jones cluster problem
described in Section 3.1 at different temperatures (γ). A measure of the efficiency
improvement of Algorithm TDMC over straightforward simulation is obtained by taking
the ratio of the last two columns

particles. This has the competing effects of increasing the workload on the one hand
but reducing the variance of the resulting estimator on the other. If we let σ2 denote
the variance of one sample run of Algorithm TDMC (i.e. var e−V (xA)êV f2 with
M = 1) and σ2

bf the variance of the random variable f (y2), then the number of samples
required to compute an estimate with a statistical error of err is M = σ2/err and
Mbf = σ2

bf/err for Algorithm TDMC and brute force respectively. Taking account
of the expected cost (scaled by ε) per sample of Algorithm TDMC (reported in the
“workload” column) and of brute force simulation (identically 2) we can obtain a
comparison of the cost of Algorithm TDMC and brute force by comparing the brute force
variance to the product of the variance of the estimate produced by Algorithm TDMC
and one-half the workload reported in the fourth column of the table. These quantities
are reported in the last two columns of the table. By taking the ratio of the two columns
we obtain a measure of the relative cost per degree of accuracy of the two methods. One
can see that the speedup provided by Algorithm TDMC becomes dramatic for smaller
values of γ. The variance of the brute force estimator is computed from the values in
the third column by

brute force variance = PxA(y2 ∈ B)(1− PxA(y2 ∈ B)).

Only the estimates in the first two rows of Table 1 were compared against straightforward
simulation. Those estimates agreed to the appropriate precision.

The choice of V used in the above simulations is certainly far from optimal. Given
the similarities in this rare event context between Algorithm TDMC and the DPR
algorithm, it should be straightforward to adapt the results of Dean and Dupuis in
[DD11] identifying optimal choices of V in the small γ limit. In fact, we suspect (but
do not prove) that, at least when the step-size parameter is small, the optimal choice of
V at any temperature is given by the time-dependent function

V (k, x) = − log P(y2 ∈ B | ykε = x).

This choice is clearly impractical as it requires knowing the probability that we are
trying to compute. Even asymptotic estimates based on taking an appropriate low γ
limit of this choice are often not practical so it is worth noting that, even with a rather
clumsy choice of V , our scheme is still able to produce impressive results to fairly low
temperatures. We fully expect however that without a very carefully chosen V , the cost
of achieving a fixed relative accuracy for our scheme will grow exponentially with γ−1

as γ → 0. This characteristic is common in rare event simulation methods.
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3.2 Non-linear filtering
In this section our goal is to reconstruct a sample path of the solution to the stochastic
differential equation

dy(1)
t = 10(y(1)

t − y
(2)
t ) dt+

√
2dB(1)

t , (3.1)

dy(2)
t = (y(1)

t (28− y(3)
t )− y(2)

t ) dt+
√

2dB(2)
t , (3.2)

dy(3)
t =

(
y(1)
t y(2)

t −
8

3
y(3)
t

)
dt+

√
2dB(3)

t , (3.3)

with

y0 =

 −5.91652
−5.52332
24.57231

 .

The deterministic version of this system is the famous Lorenz 63 chaotic ordinary
differential equation [Lor63]. The stochastic version above is commonly used in tests
of on-line filtering strategies (see e.g. [MGG94, MTAC12]).

The path of yt is revealed only through the 3-dimensional noisy observation process

dht = yt dt+ 0.1 dB̃t (3.4)

where the 3-dimensional Brownian motion B̃t is independent of Bt. Our task is to
reconstruct the path of yt given a realisation of ht. More precisely, our goal is to sample
from (and compute moments of) the conditional distribution of yt given Fht , where Fh
is the filtration generated by h. One can verify that expectations with respect to this
conditional distribution can be written as

EB
(
f (yt) exp

(
−10

∫ t
0
〈ys, dh(s)〉 − 50

∫ t
0
‖ys‖2ds

))
EB exp

(
−10

∫ t
0
〈ys, dhs〉 − 50

∫ t
0
‖ys‖2ds

) , (3.5)

where the superscript B on the expectations indicates that they are expectations over Bt
only and not over B̃t, i.e. the trajectory of ht is fixed. We will focus on estimating the
mean of this distribution (f (x) = x) which we will refer to as the reconstruction of the
hidden signal.

As always, we should first discretise the problem. The simplest choice is to again
replace (3.1) by its Euler discretisation with parameter ε. The observation process (3.4)
can be replaced by

h(k+1)ε − hkε ≈ ykε ε+ 0.1
√
ε ηk+1 (3.6)

where the ηk are independent Gaussian random variables with mean 0 and identity
covariance. We again set ε = 10−4. With this choice for ht, it is equivalent to assume
that the observation process is the sequence of increments h(k+1)ε − hkε instead of H
itself. To emphasise that we will be conditioning on the values of h(k+1)ε − hkε and not
computing expectations with respect to these variables we will use the notation4k to
denote a specific realisation of h(k+1)ε − hkε. In Figure 3.2 we plot a trajectory of the
resulting discrete process y and observations h(k+1)ε − hkε.

Note that given a particular state ykε = x, the probability of observing h(k+1)ε −
hkε = 4 is

exp
(
−‖xε−4‖

2

0.02ε

)
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Figure 3: Hidden signal (black), together with the observed signal in gray.

and expectations of the discretised process y given the h(k+1)ε−hkε = 4k observations
can be computed by the formula

Z−1k E
(
ykε exp

(
−

k∑
j=1

‖yjε ε−4j‖2

0.02ε

))
, (3.7)

where the normalisation constant Zk is given by

Zk = E exp
(
−

k∑
j=1

‖yjε ε−4j‖2

0.02ε

)
.

In the small ε limit, formula (3.7) (with k = t/ε) indeed converges to (3.5) (see [Cri11]).
Expression (3.7) suggests applying Algorithms DMC or TDMC with

χ(x, y) =
‖yε−4k+1‖2

0.02ε

at each time step. Below it will be convenient to consider the resulting choice of P (i),

P (i) = exp

(
−
‖x̃(i)

(k+1)εε−4k+1‖2

0.02ε

)

in Algorithm TDMC. With this choice, the expected number of particles at the kth step
would be

ME exp
(
−

k∑
j=1

‖yjε ε−4j‖2

0.02ε

)
,

a quantity that my decay very rapidly with k. Since our goal is to compute conditional
expectations we are free to normalise P (i) by any constant. A tempting choice is

P (i) =
Zk
Zk+1

exp

(
−
‖x̃(i)

(k+1)εε−4k+1‖2

0.02ε

)
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which would result in ENkε = M for all k. Unfortunately we do not know the
conditional expectation in the denominator of this expression. However, for a large
number of particles Nkε we have the approximation

1

Nkε

Nkε∑
i=1

exp

(
−
‖x̃(i)

(k+1)εε−4k+1‖2

0.02ε

)

≈ E
(

exp
(
−‖y(k+1)εε−4k+1‖2

0.02ε

) ∣∣∣41, . . . ,4k
)

=
Zk+1

Zk
.

This suggests using

P (i) =

exp
(
−‖x̃

(i)
(k+1)εε−4k+1‖2

0.02ε

)
1
Nkε

∑Nkε
l=1 exp

(
−‖x̃

(l)
(k+1)εε−4k+1‖2

0.02ε

) , (3.8)

which will guaranty that ENkε = M for all k.
In fact, in practical applications it is important to have even more control over the

population size. Stronger control on the number of particles can be achieved in many
ways (e.g. by resampling strategies [dDG05, Liu02]). We choose to make the simple
modification

P (i) = M

exp
(
−‖x̃

(i)
(k+1)εε−4k+1‖2

0.02ε

)
∑Nkε
l=1 exp

(
−‖x̃

(l)
(k+1)εε−4k+1‖2

0.02ε

) , (3.9)

which results in an expected number of particles at step k + 1 of M independently of
the details of the step k ensemble. Formula (3.9) depends on the entire ensemble of
walkers and does not fit strictly within the confines of Algorithms DMC and TDMC.
This choice will lead to estimators with a small, M -dependent, bias. All sequential
Monte Carlo strategies with ensemble population control for computing conditional
expectations that we are aware of suffer a similar bias.

The results of a test of Algorithm TDMC with this choice of P (i) are presented in
Figure 5 for M = 10. The true trajectory of y is drawn as a dotted line, while our
reconstruction is drawn as a solid line. Note that the dotted line is nearly completely
hidden behind the solid line, indicating an accurate reconstruction. In Figure 4 we show
the results of the same test with Algorithm TDMC replaced by Algorithm DMC. The
method obtain in this way from Algorithm DMC is very similar to a standard particle
filter with the common residual resampling step (see [Liu02]).

With our small choice of ε, one might expect that the number of particles generated
by Algorithm DMC would explode or vanish almost instantly. Our choice of P (i)

prevents large fluctuations in N . We expect instead that the number of truly distinguish-
able particles in the ensemble (in the sense that they are not very nearly in the same
positions) will drop to 1 instantly, leading to a very low resolution scheme and a poor
reconstruction. This is supported by the results shown in Figure 4.

The fact that we obtain such a good reconstruction in Figure 5 with only 10 particles
indicates that this is not a particularly challenging filtering problem. Challenging
filtering problems and more involved methods for dealing with them are discussed
in [VEW]. The purpose of this example is to demonstrate that by simply removing
unnecessary variance from a particle filter (via Algorithm TDMC) one can improve
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Figure 4: Reconstruction of the three components of the signal using Algorithm DMC.
The hidden signal is shown as a dotted line.

Figure 5: Reconstruction of the three components of the signal using Algorithm TDMC.
The hidden signal is shown as a dotted line.
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performance. This improvement is illustrated dramatically in our small ε setting. In
practice it is advisable to carry out the copying and killing steps in Algorithm TDMC less
frequently, accumulating particle weights in the intervening time intervals. Nonetheless,
any variance in the resulting estimate will be unnecessarily amplified if one uses a
method based on Algorithm DMC instead of Algorithm TDMC.

4 Bias and comparison of Algorithms DMC and TDMC

In this section we establish several general properties of Algorithms DMC and TDMC.
In contrast to later sections we do not focus here on any specific choice of the Markov
process y or the function χ. For simplicity in our displays we will assume in this section
that y is time-homogenous, i.e. that its transition probability distribution is independent
of time. As above we use E1 and E to denote expectations under the rules of Algorithms
DMC and TDMC respectively. In the proof of each result we will assume that M = 1
in Algorithms DMC and TDMC. The results follow for M > 1 by the independence
of the processes generated from each copy of the initial configuration. To keep the
formulas slightly more compact and because the results in these section do not pertain
to the continuous time limit, we will replace our subscript tk notation with a subscript k
(and t is now a non-negative integer).

Our first main result in this section establishes that Algorithms DMC and TDMC
are unbiased in the following sense.

Theorem 4.1 Algorithm TDMC produces an unbiased estimator, namely

Ef̂t = E
(
f (yt) exp

(
−
t−1∑
k=0

χ(yk, yk+1)
))

. (4.1)

The expression also holds with E replaced by E1.

The proof of Theorem 4.1 is similar to the proof of Theorem 3.3 in [DD11] and requires
the following lemma.

Lemma 4.2 For any bounded, non-negative function F on Rd × R we have

E
( N1∑
j=1

F (x(j)
1 , θ

(j)
1 )
∣∣∣x0, x̃(1)

1

)
= e−χ(x0,x̃

(1)
1 )
∫ 1

0

F (x̃(1)
1 , u) du . (4.2)

The expression also holds with E replaced by E1.

Proof. From the description of the algorithm and, in particular the fact that given x0,
and x̃(1)

1 , the tickets are all independent of each other, we obtain

E
( N1∑
j=1

F (x(j)
1 , θ

(j)
1 )
∣∣∣∣x0, x̃(1)

1

)
=

∫ 1

0

F (x̃(1)
1 , ueχ(x0,x̃

(1)
1 )) 1

(e−χ(x0,x̃
(1)
1 )≥u)

du

+
e−χ(x0,x̃

(1)
1 ) − 1

1− eχ(x0,x̃
(1)
1 )

∫ 1

eχ(x0,x̃
(1)
1 )
F (x̃(1)

1 , u) du 1(χ(x0,x̃
(1)
1 )≤0) .
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The first term on the right can be rewritten as

e−χ(x0,x̃
(1)
1 )
∫ eχ(x0,x̃

(1)
1 )

0

F (x̃(1)
1 , u) du 1(χ(x0,x̃

(1)
1 )≤0)

+ e−χ(x0,x̃
(1)
1 )
∫ 1

0

F (x̃(1)
1 , u) du 1(χ(x0,x̃

(1)
1 )>0)

while the second is

e−χ(x0,x̃
(1)
1 )
∫ 1

eχ(x0,x̃
(1)
1 )
F (x̃(1)

1 , u) du 1(χ(x0,x̃
(1)
1 )≤0) .

Combining terms we obtain

E
( N1∑
j=1

F (x(j)
1 , θ

(j)
1 )
∣∣∣∣x0, x̃(1)

1

)
= e−χ(x0,x̃

(1)
1 )
∫ 1

0

F (x̃(1)
1 , u) du 1(χ(x0,x̃

(1)
1 )≤0)

+ e−χ(x0,x̃
(1)
1 )
∫ 1

0

F (x̃(1)
1 , u) du 1(χ(x0,x̃

(1)
1 )>0)

= e−χ(x0,x̃
(1)
1 )
∫ 1

0

F (x̃(1)
1 , u) du ,

which establishes (4.2). A similar (but simpler) argument proves the result for E replaced
by E1.

With Lemma 4.2 in hand we are ready to prove Theorem 4.1.

Proof of Theorem 4.1. First notice that by Lemma (4.2), we have the identity

E
N1∑
j=1

F (x(j)
1 , θ

(j)
1 ) = E

(
e−χ(x0,y1)

∫ 1

0

F (y1, u) du
)

, (4.3)

for any function F (x, θ). In particular, the required identity holds for k = 1 by setting
F (x, θ) = f (x).

Now we proceed by induction, assuming that expression (4.1) holds for step k − 1
and prove that the relation also holds at k. Notice that, by the Markov property of the
process,

E
Nk∑
j=1

f (x(j)
k ) = E

( N1∑
j=1

Ex(j)
1 ,θ

(j)
1

(Nk−1∑
j=1

f (x(j)
k−1)

))
.

Setting

F (x, θ) = Ex,θ
Nk−1∑
j=1

f (x(j)
k−1)

in expression (4.3), we obtain

E
Nk∑
j=1

f (x(j)
k ) = E

N1∑
j=1

F (x(j)
1 , θ

(j)
1 )

= E
(
e−χ(x0,y1)

∫ 1

0

Ey1,u
(Nk−1∑
j=1

f (x(j)
k−1)

)
du

)
.



BIAS AND COMPARISON OF ALGORITHMS DMC AND TDMC 18

According to the rule for generating the initial ticket we have that∫ 1

0

Ey1,u
(Nk−1∑
j=1

f (x(j)
k−1)

)
du = Ey1

Nk−1∑
j=1

f (x(j)
k−1)

and we have therefore shown that

E
Nk∑
j=1

f (x(j)
k ) = E

(
e−χ(x0,y1)Ey1

(Nk−1∑
j=1

f (x(j)
k−1)

))
.

We can conclude, by our induction hypothesis, that

E
Nk∑
j=1

f (x(j)
k ) = E

(
e−χ(x0,y1)Ey1

(
f (yk−1)e−

∑t−2
k=0 χ(yk,yk+1)

))

= E
(
f (yt) exp

(
−
t−1∑
k=0

χ(yk, yk+1)
))

,

and the proof is complete. A similar argument proves the result for E replaced by E1.

The second main result of this section compares the variance of the estimators
generated by Algorithms DMC and TDMC. We have that

Theorem 4.3 For all bounded functions f , one has the inequality

varf̂t ≤ var1f̂t .

The inequality is strict when f is strictly positive.

The following straightforward observation is an important tool in comparing Algo-
rithms DMC and TDMC.

Lemma 4.4 After replacing the rules

θ(j,1)
k+1 =

θ(j)
k

P (j) and θ(j,i)
k+1 ∼ U((P (j))−1, 1) for i > 1 ,

in Step 4 of Algorithm TDMC by

θ(j,i)
k+1 ∼ U(0, 1) for all i , (4.4)

the process generated by Algorithm TDMC becomes identical in law to the process
generated by Algorithm DMC.

Remark 4.5 Note that the resampling of the tickets in (4.4) applies to all particles,
including i = 1.

As with the proof of Theorem 4.1, the proof of Theorem 4.3 is inductive. The most
cumbersome component of that argument is obtaining a comparison of cross terms that
appear when expanding the variance of the estimators produced by Algorithms DMC
and TDMC. This is encapsulated in the following lemma.



BIAS AND COMPARISON OF ALGORITHMS DMC AND TDMC 19

Lemma 4.6 Let F be any non-negative bounded function of Rd×R, which is decreasing
in its second argument. Then

E
( N1∑
j=1

N1∑
i 6=j

F (x(j)
1 , θ

(j)
1 )F (x(i)

1 , θ
(i)
1 )
)
≤ E1

( N1∑
j=1

N1∑
i6=j

F (x(j)
1 , θ

(j)
1 )F (x(i)

1 , θ
(i)
1 )
)

,

and the bound is strict when, for each x, F (x, θ) is a strictly decreasing function of θ.

Proof. First note that x(j)
1 = x̃(1)

1 for each j. Furthermore, conditioned on x0, x̃(1)
1 ,

and N1, the tickets are independent of each other and for j ≥ 2 they are identically
distributed (for Algorithm DMC they are identically distributed for j ≥ 1). These facts
imply that, for the new scheme,

E
( N1∑
j=1

N1∑
i 6=j

F (x̃(1)
1 , θ(j)

1 )F (x̃(1)
1 , θ(i)

1 )
∣∣∣∣ x̃(1)

1

)
=

E
(

2 1(N1>1)(N1 − 1) | x̃(1)
1

)
E
(
F (x̃(1)

1 , θ(1)
1 ) | x̃(1)

1

)
E
(
F (x̃(1)

1 , θ(2)
1 ) | x̃(1)

1

)
+ E

(
1(N1>1)(N1 − 1)(N1 − 2) | x̃(1)

1

)
E
(
F (x̃(1)

1 , θ(2)
1 ) | x̃(1)

1

)2
. (4.5)

For Algorithm DMC the tickets θ(j)
1 are i.i.d. conditioned on x̃(1)

1 so that

E1

( N1∑
j=1

N1∑
i 6=j

F (x̃(1)
1 , θ(j)

1 )F (x̃(1)
1 , θ(i)

1 )
∣∣∣∣ x̃(1)

1

)
=

E1
(
N1(N1 − 1) | x̃(1)

1

)
E1
(
F (x̃(1)

1 , θ(1)
1 ) | x̃(1)

1

)2
. (4.6)

Let
P = e−χ(x0,x̃

(1)
1 ) .

Note that on the set {P ≤ 1}, we have N1 ≤ 1, so that expressions (4.5) and (4.6)
vanish. On the set {P > 1}, we have

E
(
F (x̃(1)

1 , θ(2)
1 ) | x̃(1)

1

)
=

1

1− P−1

∫ 1

P−1

F (x̃(1)
1 , u) du ,

E
(
F (x̃(1)

1 , θ(1)
1 ) | x̃(1)

1

)
= P

∫ P−1

0

F (x̃(1)
1 , u) du ,

and

E1
(
F (x̃(1)

1 , θ(1)
1 ) | x̃(1)

1

)
=

∫ 1

0

F (x̃(1)
1 , u) du ,

so that

E1
(
F (x̃(1)

1 , θ(1)
1 ) | x̃(1)

1

)
=

1

P
E
(
F (x̃(1)

1 , θ(1)
1 ) | x̃(1)

1

)
+

(P − 1)
P

E
(
F (x̃(1)

1 , θ(2)
1 ) | x̃(1)

1

)
.

In other words, if we set
A = E

(
F (x̃(1)

1 , θ(2)
1 ) | x̃(1)

1

)
and

B = E
(
F (x̃(1)

1 , θ(1)
1 ) | x̃(1)

1

)
− E

(
F (x̃(1)

1 , θ(2)
1 ) | x̃(1)

1

)
,
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we have the identity

E1
(
F (x̃(1)

1 , θ(1)
1 ) | x̃(1)

1

)
= A+

1

P
B.

In Algorithm TDMC, θ(1)
1 ≤ θ

(2)
1 so that, if F is a decreasing function of θ, then

B ≥ 0.

Now note that the variable N1 is the same for both algorithms and is given explicitly
by the formula

N1 = 1(
θ(1)
1 ≤e

−χ(x0,x̃
(1)
1 )≤1

) + 1(χ(x0,x̃
(1)
1 )<0)

×

(⌊
e−χ(x0,x̃

(1)
1 )
⌋

+ 1(
U<e−χ(x0,x̃

(1)
1 )−

⌊
e−χ(x0,x̃

(1)
1 )
⌋)
)

,

where U is a uniform random variable in [0, 1]. Using this formula we can compute the
expectations involving N1 explicitly. Defining

R = P − bP c,

on the event {P > 1} we have that

E1
(
N1(N1 − 1) | x̃(1)

1

)
= (P −R)(P − 1 +R) ,

E
(

1(N1>1)(N1 − 1) | x̃(1)
1

)
= P − 1 ,

and
E
(

1(N1>1)(N1 − 1)(N1 − 2) | x̃(1)
1

)
= (P − 1−R)(P − 2 +R).

The difference of terms (4.6) and (4.5), which vanishes on P < 2, can now be
written as

2(P − 1)AB − 2(P −R)(P − 1 +R)AB
1

P
− (P −R)(P − 1 +R)B2 1

P 2

on the set {P ≥ 2}. Recalling that B ≥ 0 (we can drop the last term) and rearranging
we see that this expression is bounded above by

2
AB

P
(P (P − 1)− (P −R)(P − 1 +R)). (4.7)

Note that since 0 ≤ R ≤ 1 we have P−1 ≤ P−1+R ≤ P−R ≤ P . The difference in
the parenthesis in (4.7) is the difference in the area of two squares with equal perimeter,
the second of which (in the sense of the last sequence of inequalities) is closer to square.
The difference is therefore non-positive. All bounds are strict whenever, for each x,
F (x, θ) is a strictly decreasing function of θ.

Finally we complete the proof that the variance of the estimator generated by
Algorithm TDMC is bounded above by the variance of the estimator generated by
Algorithm DMC.
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Proof of Theorem 4.3. By Theorem 4.1 we have that

Ef̂t = E1f̂t ,

so it suffices to show that
E(f̂t)2 ≤ E1(f̂t)2 . (4.8)

Furthermore, since the variance does not change by adding a constant to f we can, and
will from now on, assume that f (x) ≥ 0 for every x. In order to prove (4.8), we will
proceed by induction. Since the random variables N1 and x̃(1)

1 are the same in both
schemes, the result is true for k = 1. Now assume that (4.8) holds through step k − 1.
We will show that

E
(Nk∑
j=1

f (x(j)
k )
)2
≤ E1

(Nk∑
j=1

f (x(j)
k )
)2

. (4.9)

Observe that we can write

Nk∑
j=1

f (x(j)
k ) =

N1∑
j=1

N (j)
1,k∑
i=1

f (x(j,i)
1,k ) ,

where we used N (j)
1,k to denote the number of particles at time k whose ancestor at time

1 is x(j)
1 . The descendants of x(j)

1 are enumerated by x(j,i)
1,k for i = 1, 2, . . . , N (j)

1,k.
By the conditional independence of the descendants of the particles at time k when

conditioned on x0, x̃(1)
1 , and N1, we have that

E
(Nk∑
j=1

f (x(j)
k )
)2

= E
( N1∑
j=1

Ex(j)
1 ,θ

(j)
1

(Nk−1∑
i=1

f (x(i)
k−1)

)2)

+ E
( N1∑
j=1

N1∑
i6=j

Ex(j)
1 ,θ

(j)
1

(Nk−1∑
l=1

f (x(l)
k−1)

)

× Ex(i)
1 ,θ

(i)
1

(Nk−1∑
l=1

f (x(l)
k−1)

))
. (4.10)

An identical expression (with E replaced by E1) holds for Algorithm DMC. Setting

F1(x, θ) = Ex,θ
Nk−1∑
l=1

f (x(l)
k−1) ,

and

F2(x, θ) = Ex,θ
(Nk−1∑

i=1

f (x(i)
k−1)

)2

,

we can rewrite the last identity in the case of Algorithm TDMC as

E
(Nk∑
j=1

f (x(j)
k )
)2

= E
N1∑
j=1

F2(x(j)
1 , θ

(j)
1 ) + E

N1∑
j=1

N1∑
i 6=j

F1(x(j)
1 , θ

(j)
1 )F1(x(i)

1 , θ
(i)
1 ).
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In the case of Algorithm DMC with

F 0
1 (x, θ) = E1

x,θ

Nk−1∑
l=1

f (x(l)
k−1)

and

F 0
2 (x, θ) = E1

x,θ

(Nk−1∑
i=1

f (x(i)
k−1)

)2

,

we have

E1

(Nk∑
j=1

f (x(j)
k )
)2

= E1
N1∑
j=1

F 0
2 (x(j)

1 , θ
(j)
1 ) + E1

N1∑
j=1

N1∑
i6=j

F 0
1 (x(j)

1 , θ
(j)
1 )F 0

1 (x(i)
1 , θ

(i)
1 ) .

Note that Lemma 4.2 implies that

E
N1∑
j=1

F2(x(j)
1 , θ

(j)
1 ) = E1

N1∑
j=1

F2(x(j)
1 , θ

(j)
1 ).

Under the rules of Algorithm DMC, conditioned on x0 and x̃(1)
1 , the ticket θ(j)

1 is
independent of N1. So we can write the last equality as

E
N1∑
j=1

F2(x(j)
1 , θ

(j)
1 ) = E1

( N1∑
j=1

Ex(j)
1

(
F2(x(j)

1 , θ
(j)
1 )
))

.

By our inductive hypothesis we then have that

E
N1∑
j=1

F2(x(j)
1 , θ

(j)
1 ) ≤ E1

( N1∑
j=1

Ex(j)
1

(
F 0
2 (x(j)

1 , θ
(j)
1 )
))

Appealing again to the conditional independence of θ(j)
1 and N1 under Algorithm DMC

we have that

E
N1∑
j=1

F2(x(j)
1 , θ

(j)
1 ) ≤ E1

N1∑
j=1

F 0
2 (x(j)

1 , θ
(j)
1 ) .

We now move on to the second term in (4.10). It follows from the definition of
Algorithm TDMC that the function F1 is strictly decreasing in θ, so that Lemma 4.6
yields

E
( N1∑
j=1

N1∑
i 6=j

F1(x(j)
1 , θ

(j)
1 )F1(x(i)

1 , θ
(i)
1 )
)
≤ E1

( N1∑
j=1

N1∑
i 6=j

F1(x(j)
1 , θ

(j)
1 )F1(x(i)

1 , θ
(i)
1 )
)
.

Under the rules of Algorithm DMC, conditional on x0 and x̃(1)
1 , the θ(1)

1 are all in-
dependent of each other and of N1. Therefore we can integrate over the tickets to
obtain

E
( N1∑
j=1

N1∑
i 6=j

F1(x(j)
1 , θ

(j)
1 )F1(x(i)

1 , θ
(i)
1 )
)

≤ E1

( N1∑
j=1

N1∑
i 6=j

Ex(j)
1

(
F1(x(j)

1 , θ
(j)
1 )
)

Ex(i)
1

(
F1(x(i)

1 , θ
(i)
1 )
))

.
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By Theorem 4.1 we have that

Ex(j)
1

Nk−1∑
l=1

f (x(l)
k−1) = E0

x(j)
1

Nk−1∑
l=1

f (x(l)
k−1)

or
Ex(j)

1
F1(x(j)

1 , θ
(j)
1 ) = E1

x(j)
1

F 0
1 (x(j)

1 , θ
(j)
1 ) .

This yields

E
( N1∑
j=1

N1∑
i 6=j

F1(x(j)
1 , θ

(j)
1 )F1(x(i)

1 , θ
(i)
1 )
)

≤ E1

( N1∑
j=1

N1∑
i 6=j

E1
x(j)
1

(
F 0
1 (x(j)

1 , θ
(j)
1 )
)

E1
x(i)
1

(
F 0
1 (x(i)

1 , θ
(i)
1 )
))

.

Reinserting the tickets we obtain

E
( N1∑
j=1

N1∑
i 6=j

F1(x(j)
1 , θ

(j)
1 )F1(x(i)

1 , θ
(i)
1 )
)
≤ E1

( N1∑
j=1

N1∑
i 6=j

F 0
1 (x(j)

1 , θ
(j)
1 )F 0

1 (x(i)
1 , θ

(i)
1 )
)

,

which completes the proof.
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