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Abstract
We study the dynamic behaviour at high energies of a chain of anharmonic oscil-
lators coupled at its ends to heat baths at possibly different temperatures. In our
setup, each oscillator is subject to a homogeneous anharmonic pinning potential
V1(qi) = |qi|2k/2k and harmonic coupling potentials V2(qi− qi−1) = (qi− qi−1)2/2
between itself and its nearest neighbours. We consider the case k > 1 when the
pinning potential is stronger then the coupling potential. At high energy, when a large
fraction of the energy is located in the bulk of the chain, breathers appear and block the
transport of energy through the system, thus slowing its convergence to equilibrium.

In such a regime, we obtain equations for an effective dynamics by averaging out
the fast oscillation of the breather. Using this representation and related ideas, we can
prove a number of results. When the chain is of length three and k > 3/2 we show
that there exists a unique invariant measure. If k > 2 we further show that the system
does not relax exponentially fast to this equilibrium by demonstrating that zero is in
the essential spectrum of the generator of the dynamics. When the chain has five or
more oscillators and k > 3/2 we show that the generator again has zero in its essential
spectrum.

In addition to these rigorous results, a theory is given for the rate of decrease of the
energy when it is concentrated in one of the oscillators without dissipation. Numerical
simulations are included which confirm the theory.

1 Introduction

One subject that has received considerable attention in recent years is the return to
equilibrium of systems arising from statistical mechanics. One of the simplest models
of interest is given by the kinetic Fokker-Planck equation

∂tϕt = Lϕt , ϕ0 = ϕ , L =
1
2
∂2
p − p ∂p + p ∂q −∇V (q) ∂p , p, q ∈ Rn . (1.1)

This equation describes the evolution of an observable ϕ : Rn → R under the Hamil-
tonian dynamic for the energy H(p, q) = p2

2 + V (q), perturbed by friction and noise:

dp = −∇V (q) dt− p dt+ dw(t) , dq = p dt . (1.2)
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The relation between (1.2) and (1.1) is given by the fact that the function ϕt(p0, q0) =
Eϕ0(p(t), q(t)) satisfies the partial differential equation (1.1), provided that the pair
(p(t), q(t)) solves (1.2). It can easily be checked by inspection that if V is sufficiently
smooth and coercive, the measure µ = exp(−2H(p, q)) dp dq is invariant under this
dynamic in the sense that if ϕt satisfies (1.1), then

∫
ϕtdµ does not depend on t. This

can be rephrased as saying that if (p0, q0) is a random variable with law µ independent
of the driving noise w, then the law of (p(t), q(t)) is given by µ for all times.

Underpinning much of the analysis of L on the space L2(µ) is the guiding principle
that it related to the corresponding Witten Laplacian [HN05]

∆V = −∆q + |∇V (q)|2 − (∆V )(q) . (1.3)

In particular, it was conjectured by Helffer and Nier [HN05, Conjecture 1.2] that L
has compact resolvent on L2(µ) if and only if ∆V has compact resolvent on the flat
space L2(Rn). This conjecture has been partially solved in [HN05] (see also [Nie06])
in the sense that one can exhibit a large class of potentials for which it holds (loosely, V
should grow in a sufficiently regular way at infinity). Recently, upper as well as lower
bounds on the spectral gap of L have been obtained in [HN04, Vil06] for potentials V
that satisfy certain growth conditions at infinity.

All of the results cited above make heavy use of the following two key facts:
a. There is an explicit formula for the invariant measure of (1.2).
b. The friction term −p∂p acts on all (physical) degrees of freedom of the system.
Both of these facts are violated in the following very popular model for heat con-

duction. Take a finite collection ofN+1 anharmonic oscillators with nearest-neighbour
couplings, that is a classical Hamiltonian system with Hamiltonian given by

H(p, q) =
N∑
i=0

(p2
i

2
+ V1(qi)

)
+

N∑
i=1

V2(qi − qi−1) . (1.4)

Here, the potential V2 is the interaction potential between neighboring oscillators,
whereas V1 is a pinning potential. This system is then put in contact with two heat
baths at different temperatures T0 and TN . We model the interaction with the heat
baths by the standard Langevin dynamics, so that the equations of motion of our sys-
tem are given by

dp0 = −γ0p0 dt− V ′1 (q0) dt− V ′2 (q0 − q1) dt+ σ0 dw0

dpi = −V ′1 (qi) dt− V ′2 (qi − qi−1) dt− V ′2 (qi − qi+1) dt (1.5)
dpN = −γNpN dt− V ′1 (qN ) dt− V ′2 (qN − qN−1) dt+ σN dwN

dqj = pj dt .

Here, we set σ2
i = 2γiTi, the index i runs from 1 to N − 1 and the index j runs from

0 to N . As described in [BLR00], the rigorous analysis of this model and in partic-
ular the derivation of Fourier’s law (or the proof of its breakdown) is an outstanding
mathematical problem of great interest to the applied community.

If T0 = TN = T , then one can check as before that this set of equations has
a unique invariant measure, which has density exp(−H(p, q)/T ) with respect to the
Lebesgue measure, whereH is the Hamiltonian from (1.4). When the two temperatures
T0 and TN are different however, much less is known. In particular, as we will see
immediately, even the existence of an invariant probability measure is an open problem
in some cases as simple as V1(q) = q4 and V2(q) = q2.
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This model has been the subject of many studies, both from a numerical and from
a theoretical perspective. The purely harmonic case has been solved explicitly in
[RLL67]. Though no explicit solution is known in the anharmonic case, a wealth of
numerical experiments exist, see for example [LLP03] and references therein. Since
we will mainly focus on the theoretical aspects of the model, we refer to [EPR99a,
EPR99b], which seems to be one of the first rigorous studies of the anharmonic case.
It was shown in [EH00, EH03] that if V1(q) and V2(q) behave approximately like |q|a1

and |q|a2 respectively at infinity then, provided that a2 > a1 > 2, there exists a unique
invariant measure for (1.5). The statement that was proved was actually stronger than
that, namely it was shown that the generator L of (1.5) has compact resolvent in every
space of the formL2(exp(−H(p, q)/T ) dp dq) with T > max{T0, TN}/2. In [RBT02],
it was also shown, using entirely probabilistic rather than functional-analytic tech-
niques, that the condition a2 ≥ a1 ≥ 2 is sufficient for the existence and uniqueness
of an invariant measure for (1.5). Furthermore, the compactness of the corresponding
semigroup in some weighted L∞ space was also proved there.

This left open the case a2 < a1 which is the subject of the present study. To our
knowledge, no previous rigorous results exist in this case, although some interesting
theory has been developed recently in [BK07, LS05]. At first sight, one might think
that there is no a priori reason for the behaviour of (1.5) to differ in any essential way
from the case a2 ≥ a1 where spectral gap results are known. Such wishful thinking
turns out to be overly optimistic. Even in the simplest possible scenario, that is when
V1(q) = q4 and V2(q) = q2, we will show in Theorem 3.11 below that the compactness
property of the resolvent of L is destroyed as soon as N + 1 ≥ 3. Furthermore, when
N + 1 ≥ 5, it will be shown in Theorem 3.13 that the essential spectrum of L (always
in a weighted L2 space of the type considered before) extends all the way to 0. These
negative results hold even in the case where T0 = TN = T , showing that having
the friction acting on all physical degrees of freedom is a crucial assumption for the
Helffer-Nier conjecture to hold.

The reason why the behaviour of (1.5) changes so drastically when a2 < a1 can
be understood heuristically by the appearance of breathers (see for example [MA94]).
Breathers are dynamically stable, spatially localised, periodic orbits that arise in the
noise-free translation invariant (i = −∞, . . . ,+∞) version of (1.5). Good approxi-
mations to these orbits persist in (1.5), especially if N is large. It is therefore possible
to put the system into a state where most of its energy is localised in a few oscillators
located in the middle of the chain. On the other hand, energy can be dissipated only
through the terms −γp appearing in the equations for the first and the last oscillator.
Therefore, one expects the energy of the system to decay extremely slowly. The appear-
ance of breathers can be proved in the case where the strength of the nearest-neighbour
coupling is much weaker than the strength of the pinning potential. At high energies,
this is precisely the case when a2 < a1.

This discussion shows that even the mere existence of an invariant measure is a non-
trivial problem in this model unless T0 = TN , in which case one can check explicitly
that the usual Boltzmann-Gibbs distribution is invariant. This differs from many other
systems in that the existence of an invariant measure, not its uniqueness, is difficult.
In fact, the uniqueness of an invariant measure for a chain of arbitrary length follows
quickly from the hypoellipticity of the generator and the Hamiltonian structure once
the existence of an invariant measure is established.

We are at the moment unable to provide a general proof that shows the existence
of an invariant measure for a chain of arbitrary length. However, in the case of a chain
comprising of 3 oscillators, we show in Theorem 5.6 below that there exists a unique
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invariant measure, provided that the coupling potential is harmonic and the pinning
potential is homogeneous of sufficiently high degree. This result is proven by first
obtaining an effective dynamics when most of the energy is concentrated in the central
oscillator. This effective dynamics is then used to construct a Lyapunov function whose
level sets are compact and hence, by a variation on the classical Kryloff-Bogoliouboff
method, implies the existence of an invariant measure.

The remainder of this article is organised as follows. In Section 2, we give a formal
calculation that shows how it is possible to relate the spectral properties of L to the
scaling properties of the potentials V1 and V2. The results given by these formal cal-
culations are then compared to numerical simulations. We proceed in Section 3 to the
proof of the negative results concerning the lack of compactness and/or of a spectral
gap for L. In Section 4 we derive effective equations of motion for the system of three
oscillators in the regime when a breather is present. Here, we make heavy use of the
compensator techniques from averaging / homogenization theory [BLP78]. Finally, we
show in Section 5 that in the simplest case of a chain of three oscillators with harmonic
coupling potentials, one can show the existence of an invariant measure for any degree
of homogeneity greater than 2 for the pinning potential. Perhaps more interesting then
this last result is the method of proof. We derive as system of effective equations and
prove their accuracy that when the energy of middle oscillator is large. These effec-
tive equations give insight into the mechanism of energy dissipation and are used to
construct a Lyapunov function.
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2 A formal calculation

In this section, we first perform a formal calculation that allows us to get a feeling of
the speed at which energy is extracted from such a system. Consider the simplest non-
trivial case, that is when N + 1 = 3. In order to keep things simple, we furthermore
assume that the coupling potential V2 is quadratic: V2(q) = q2/2 and that the pinning
potential is homogeneous of degree 2k: V1(q) = |q|2k/(2k) for some real number
k > 1. The equations of motion for the system of interest are thus given by

dp0 = −γ0p0 dt− q0|q0|2k−2 dt− (q0 − q1) dt+
√

2γ0T0 dw0

dp1 = −q1|q1|2k−2 dt− (2q1 − q0 − q2) dt

dp2 = −γ2p2 dt− q2|q2|2k−2 dt− (q2 − q1) dt+
√

2γ2T2 dw2

dqj = pj dt .

(2.1)

Let us first have a look at the motion of the middle oscillator by itself, i.e. at the solution
of

dp = −q|q|2k−2 dt , dq = p dt . (2.2)
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It is easy to see that this equation is invariant under the substitution

q(t) = E
1
2k q̃(Eαt) , p(t) = E

1
2 p̃(Eαt) , (2.3)

with α = 1
2−

1
2k . Let us now denote by (p̃, q̃) the solution to (2.2) with initial condition

(
√

2, 0), so that (p, q) as given by (2.3) is the (unique up to a phase) solution to (2.2) at
energy E. Since the variables p and q are assumed to be one-dimensional, the solution
(p̃, q̃) is periodic, say with period τ .

Consider now the equation for the left oscillator, into which we substitute the (ap-
proximate) solution to the motion of the middle oscillator that we just found:

dp0 = −γ0p0 dt− q0|q0|2k−2 dt+ q0 dt+
√

2γ0T0dw0 + E
1
2k q̃(Eαt) dt

dq0 = p0 dt . (2.4)

If E is large compared to the typical size of (p0, q0) we expect that, up to lower order
corrections, the solution to this equation behaves like the superposition of the solution
(p̄0, q̄0) to (2.4) with the exogenous forcing q̃ ≡ 0 and of a highly oscillatory term of
the form

p̃0 = E
1
2k−α P (Eαt) , Ṗ = q̃ . (2.5)

By symmetry, the same applies to the right oscillator (p2, q2). Applying now Itô’s
formula to the total Hamiltonian H for (2.1) yields

d

dt
EH(t) = E(γ0T0 + γ2T2 − γ0p

2
0(t)− γ2p

2
2(t)) . (2.6)

In light of the above discussion, we take (pi, qi) ≈ (p̄i + p̃i, q̄i + q̃i) for i = 0, 2 so
p2
i = p̄2

i + 2p̄ip̃i + p̃2
i . From its definition, observe that Ep̄2

i (t) → Ti as t → ∞ for
i = 0, 2. Furthermore, when the energy E of the middle oscillator is large, we expect
the product p̄0(t)p̃0(t) to average out to a small quantity when integrated over time
periods much larger than E−α due to the highly oscillating, mean zero p̃0(t). Applying
this line of reasoning to (2.6) shows that, in the regime where most of the energy of the
system is concentrated in the middle oscillator, one expects to have

d

dt
H(t) ≈ −(γ0Ep̃2

0 + γ2Ep̃2
2) ≈ −(γ0 + γ2)κkH(t)

2
k−1 , (2.7)

where κk is the variance of the function P introduced in (2.5), that is

κk =
1
τ

∫ τ

0

P 2(s) ds− 1
τ2

(∫ τ

0

P (s) ds
)2

, Ṗ (t) = q̃(t) . (2.8)

The dependence on k comes from the fact that q̃ is the position of the free oscillator
with potential |q|

2k

2k . Actually, one expects this behaviour to be correct even in a chain
with more than just three oscillators. If the chain has N + 1 = 2n + 1 oscillators
and most of the energy is stored in the middle oscillator, one expects the motion of the
endpoints to be given by the superposition of a slow motion and a highly oscillatory
fast motion p̃0 with a scaling of the type

p̃0 = E
1
2k−(2n−1)α P̂ (Eαt) ,

where P̂ is the (unique) periodic function such that d2n−1P̂
dt2n−1 = q̃ and such that the

integral of P̂ over one period vanishes. (This is because we assume that the nearest-
neighbour couplings are linear.) This suggests that in the general case of a chain of
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length N + 1 = 2n+ 1, the energy of the system decreases like

d

dt
H(t) ≈ −(γ0 + γN )κk,nH(t)

2n
k +1−2n , (2.9)

for κk,n the variance of P̂ (of course, κk,1 = κk as defined above). If N + 1 = 2n
is even, the worst-case scenario is obtained by storing most of the energy in one of the
two middle oscillators. Since their distance to the boundary is the same as the distance
of the middle oscillator to the boundary in the chain of length 2n + 2, we expect the
rate of decay of the energy to be similar in both cases.

Remark 2.1 If the coupling potential is not quadratic but homogeneous of degree 2`,
one can still perform a calculation similar to the one we just did, but one has to be
more careful. When looking at the influence of qi on pi−1 say, one should take into
account whether the fast oscillations of qi are of order smaller or larger than 1. If they
are of order smaller than one, one can linearise the coupling potential. If they are or
order larger than one, one should multiply them by the scaling exponent arising in the
coupling. Suppose as before that the chain contains N + 1 = 2n + 1 oscillators and
that most of it’s energy is stored in the middle oscillator (oscillator n). Assume that the
amplitudes in the fast oscillations of pi and qi scale like Eβi and Eβi−α respectively.
(Recall that α = 1

2 −
1
2k is the exponent giving the period of the oscillations.)

One then has βn = 1/2. The values of βi with i < n are given by the following
recursion formula:

βi =
{

(2`− 1)(βi+1 − α)− α if βi+1 > α
βi+1 − 2α if βi+1 ≤ α

Using this formula, one can then compute γ = 2β0. Note that if ` = 1, one obtains
β0 = 1

2 − 2nα which agrees with the value for γ obtained previously.

Remark 2.2 One would expect these scaling relations to hold at high energies, even
if the potentials are not exactly homogeneous. One can then still perform most of
the analysis presented below by splitting the right-hand side of the equations into a
homogeneous part and a remainder term and by assuming that the remainder gets small
(in a suitable sense) at high energies.

2.1 Numerical simulations
In this section, we show that there is a surprisingly good agreement, even over ex-
tremely long time intervals, between numerical simulations of (2.1) and the predictions
(2.7) and (2.9). In order to compare the two, we introduce the function

H (k,n)(p, q) = Hβ(p, q) , β = 2n
(

1− 1
k

)
.

Plugging this into (2.9), we get the prediction

H (k,n)(t) ≈ H (k,n)(0)− (γ0 + γ2)n(2− 2
k )κk,n . (2.10)

A straightforward numerical simulation (essentially integration of the free equation)
furthermore allows to compute the values of κk,n to very high precision. For example,
we obtain

κ2,1 ≈ 0.63546991 , κ3,1 ≈ 0.42363371 . (2.11)
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We performed numerical simulations for the cases k = 2 and k = 3. Both simulations
were performed using a modification of the classical Störmer-Verlet method (see for
example [HLW06]) to take into account for the friction and the noise. The modification
was done in such a way that the resulting method is still of order two.

The simulation for k = 2 was performed at a stepsize h = 10−3, and the simulation
for k = 3 was performed at a stepsize h = 4 · 10−4. Both simulations used γ0 = γ2 =
1.3 and T0 = T2 = 1.

t
0 5 10 15 20

×105

×104

H(t)

0

1

2

3

V1(q) =
q4

4

Simulation
Prediction

t
0 2 4 6 8

×105

×106

H(t)

0

1

2

3

V1(q) =
q6

6

Simulation
Prediction

The prediction obtained from (2.10) with the values (2.11) is shown as a dashed line
on these figures, but it fits the numerics so well that it is nearly invisible. We emphasise
that there were no free parameters in the fit, all constants are predicted by the theory.
Note that the timescale in the second picture differs by a factor 40 from the timescale
in the first picture.

2.2 Comparison to a gradient diffusion
In this section, we argue that the energy decay rate predicted by (2.9) also yields a
prediction on the qualitative nature of the spectrum of the generator of (2.1) in the
weighted space L2(µ), where µ is the invariant measure.

The idea is to model the behaviour of the energy H(t) by a one-dimensional diffu-
sion of the type

dx = b(x) dt+ a(x) ◦ dw(t) .1 (2.12)

It is well-known that the invariant measure for (2.12) is given by

µ(dx) = Z−1 exp
(

2
∫ x

0

b(t)
a2(t)

dt
)
.

Since we expect the invariant measure of (2.1) to behave roughly like exp(−βH) dH
(up to lower-order corrections), we should choose a such that a2(x) ≈ |b(x)| for large
x. Combining this with (2.9), we obtain the model

b(x) = −xγ , a(x) = xγ/2 , γ =
2n
k

+ 1− 2n , (2.13)

which has 2 exp(−2x) dx as its invariant measure (we restrict ourselves to the half-
space x ≥ 0). Note that since k > 1 (the pinning potential grows faster than the
coupling potential), one has always γ < 1.

1Here the “◦” represents a Stratonovich integral (rather than an Itô integral).
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With the choice (2.13), the generator for (2.12) is then given by

(Lf)(x) =
1
2
∂x(xγ∂xf)(x)− xγ∂xf (x) .

Since the operator (Kf )(x) = f (x) exp(−x) is a unitary operator from the weighted
space L2(exp(−2x) dx) to the flat L2 space, the operator L is unitarily equivalent to
the operator L1 on L2 given by

(L1f)(x) =
1
2
∂x(xγ∂xf)(x)− xγ−1

2
(x− γ) .

At this point, we recall that if ϕ : R+ → R+ is a strictly increasing differentiable
function with ϕ(0) = 0 and limx→∞ ϕ(x) =∞, then the operator

(Uϕf)(x) = f (ϕ(x))
√
ϕ′(x)

is a unitary operator from L2(R+) to itself which furthermore satisfies the identity
U−1
ϕ = Uϕ−1 . Under conjugation withUϕ, we see that one has the unitary equivalences

∂x ≈
1

ϕ′(x)
∂x −

ϕ′′(x)
2(ϕ′(x))2

, V (x) ≈ V (ϕ(x)) .

Choosing ϕ(x) = x2/(2−γ), we see that L1 is unitarily equivalent to the operator L2

given by

(L2f)(x) =
1
2

(2− γ
2

∂x +
γ

4x

)(2− γ
2

∂x −
γ

4x

)
− x

2γ−2
2−γ

2
(x

2
2−γ − γ)

=
(2− γ)2

8
∂2
x +

(γ(2− γ)
16

− γ2

32

)
x−2 − x

2γ−2
2−γ

2
(x

2
2−γ − γ)

This is a Schrödinger operator with a potential that behaves at infinity like x2γ/(2−γ).
It follows that
• If 1 > γ > 0, then the operator L2 has compact resolvent.
• If γ = 0, the operator L2 does not have compact resolvent, but it still has a spec-

tral gap (since one can see that its essential spectrum is the interval [1/2,∞)).
• If γ < 0, then 0 belongs to the essential spectrum of L2.

See for example [RS78] for a proof. It is then a natural conjecture that the spectrum of
the generator of (1.5) on the L2 space weighted by the invariant measure has the same
behaviour (as a function of the parameter γ = 2n

k + 1−2n) as just described. The next
section is a step towards a proof of this conjecture.

3 Lack of spectral gap

The aim of this section is to obtain information on the location of the essential spectrum
of the generator L for (1.5). This will be accomplished by using ideas from averag-
ing/homogenization theory to build a set of approximate eigenvectors. Since L is not
self-adjoint, there are various possible definitions of its essential spectrum (see [EE87]
or [GW69] for a survey). We choose to retain the following definition:

Definition 3.1 For T a closed densely defined operator on a Banach space B, the es-
sential spectrum σe(T ) is defined as the set of all values λ ∈ C such that T − λ is not
a semi-Fredholm operator.
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The set σe(T ) is contained in the corresponding sets for all other alternative defini-
tions of the essential spectrum appearing in the abovementioned works. In this sense,
the statement “λ ∈ σe(T )” used here is the strongest. In particular, it is contained in
the set ⋂

K∈K(B)

σ(T +K) ,

where K(B) denotes the ideal of all compact operators on B and σ(T ) denotes the
spectrum of an operator T .

We will make use of the following generalisation of Weyl’s criterion [RS78], which
gives a useful criterion for identifying the essential spectrum:

Proposition 3.2 Let T be a closed densely defined operator on a Banach space B. For
any λ ∈ C, λ ∈ σe(T ) if and only if there exist sequences ϕn and ϕ∗n of elements
in D(T ) ⊂ B and D(T ∗) ⊂ B∗ respectively with ‖ϕn‖ = ‖ϕ∗n‖ = 1 and having
no convergent subsequence such that limn→∞ ‖Tϕn − λϕn‖ = limn→∞ ‖T ∗ϕ∗n −
λ̄ϕ∗n‖ = 0.

Proof. See [EE87, Theorem 9.1.3] and [Kat95, Theorem IV.5.11], or the original work
[Wol59].

There are situations in which, even though it is difficult to locate the essential spec-
trum precisely, one can nevertheless exhibit a sequence ϕn as above such that Tϕn
remains bounded. In that case, one has:

Proposition 3.3 Let T be a closed densely defined operator on a Banach space B with
non-empty resolvent set. If there exists a sequence ϕn of elements in D(T ) ⊂ B with
‖ϕn‖ = 1 and having no convergent subsequence such that lim supn→∞ ‖Tϕn‖ <∞,
then T does not have compact resolvent.

Proof. This claim follows from the fact that the compactness of the resolvent is equiva-
lent to the statement that sets of the form {ϕ | ‖ϕ‖ ≤ 1 & ‖Tϕ‖ ≤ K} are precompact.

3.1 Scalings
Before we turn to the study of the generator, we make some remarks about the regular-
ity and the behaviour of functions that scale in a particular way.

Denote by XHf = P∂Q − Q|Q|2k−2∂P the Liouville operator associated to the
”free” oscillator

Hf (P,Q) =
P 2

2
+
|Q|2k

2k
. (3.1)

The constant k is not necessarily an integer, so that in general the function Hf is not
C∞ but only C[2k], where [2k] is the integer part of 2k. We introduce the following
definition:

Definition 3.4 A function ψ : R2 \ {0} → R is said to scale like Hα
f if it satisfies the

relation ψ(λP, λ
1
kQ) = λ2αψ(P,Q).

One has the following elementary result:
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Lemma 3.5 If ψ ∈ C1(R2 \ {0}) scales like Hα
f , then ∂Pψ scales like Hα− 1

2
f , ∂Qψ

scales like Hα− 1
2k

f , and XHfψ scales like Hα+ 1
2−

1
2k

f .

Given some fixed α, there is a one-to-one correspondence between functions ϕ that
scale like Hfα and functions on the circle S1 in the following way. Define a function
r : S1 → R+ by the unique positive solution to

r2(θ) cos2 θ
2

+
r2k(θ)| sin θ|2k

2k
= 1 ,

and set
(Sϕ)(θ) = ϕ(r(θ) cos θ, r(θ) sin θ) .

The function r is bounded away from 0 (it is actually between
√

2 and (2k)1/(2k)) and,
by the implicit functions theorem, it is of class C[2k]. A straightforward but slightly
tedious calculation shows that, via S, the operator XHf is conjugated to the differential
operator

(X̃Hf f)(θ) = ω(θ)f ′(θ) , ω(θ) = cos2 θ + r2k−2(θ)| sin θ|2k .

Definition 3.6 A function ψ : R2 → R that scales like Hfα is said to average out to 0
if ∫ 2π

0

(Sψ)(θ)
ω(θ)

dθ = 0 .

With these preliminaries, the following result is now straightforward:

Proposition 3.7 Let ψ ∈ Cr(R2 \{0}) scale likeHα
f and average out to 0. Then, there

exists a unique solution ϕ to the equation

XHfϕ = ψ , (3.2)

such that ϕ also averages out to 0. Furthermore, ϕ scales like Hα+ 1
2k−

1
2

f and one has
ϕ ∈ Cr′ (R2 \ {0}) with r′ = min{[2k], r + 1}.

Proof. Let ϕ be the unique function scaling like Hfα+ 1
2k−

1
2 and such that

(Sϕ)(θ) =
∫ θ

0

(Sψ)(t)
ω(t)

dt− 1
2π

∫ 2π

0

∫ θ

0

(Sψ)(t)
ω(t)

dt dθ .

One can check that one has indeed XHfϕ = ψ. Furthermore, it follows from their
explicit expressions that both S and S−1 map Cr functions into Cr functions as long as
r ≤ [2k].

We conclude this section with a small lemma that allows us to compute the L2

norm of functions that scale in a certain way. Let (P,Q) ∈ R2 and (x, y) ∈ R2n for
some n ≥ 1. The functions that will be considered in the remainder of this section will
always be of the form

ϕE (P,Q, x, y) = F (x− g(P,Q), y − h(P,Q))ψ(P,Q)χ(Hf (P,Q)/E) , (3.3)

for some parameter E > 0. One has
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Lemma 3.8 Let F ∈ L2(R2n), let g, h : R2 → Rn be measurable, let χ : R+ → R
be continuous and compactly supported away from 0, and let ψ be a function that is
continuous away from 0 and scales like Hα

f for some α ∈ R. Then, the L2-norm of ϕE
defined as in (3.3) satisfies ‖ϕE‖ ∝ Eα+ 1

4+ 1
4k .

Proof. Make the change of variables (P̃ , Q̃) = (E 1
2P, E 1

2kQ) and use the scaling prop-
erties of ψ.

3.2 The case of three oscillators
Before we tackling the general case of a chain with arbitrary length, let us “cut our
teeth” on the problem with three oscillators. Since we do not have an explicit expres-
sion for the invariant measure µ (indeed, at this stage, we do not even know that it ex-
ists!), we are going to study the generator of (1.5) in spaces of the typeL2(e−βH dp dq).
As in [EPR99b, EH00], it is not expected that the qualitative nature of the spectrum ofL
depends on the choice of β, as long as β < 2 min{β0, β2} (as usual, we set βi = 1/Ti).
Since one expects the true invariant measure to be somehow ”in between” the Gibbs
measures at temperatures T0 and T2, it is very likely that the qualitative nature of the
spectrum of L in L2(µ) is also the same.

We write

H0 =
p2
0

2
+
|q0|2k

2k
+
q20
2

, H2 =
p2
2

2
+
|q2|2k

2k
+
q22
2

,

H1 =
p2
1

2
+
|q1|2k

2k
.

Remark 3.9 One should not think of H0 (and H2) as the energy one gets by pinning
q1 at 0, but rather as the energy such that the corresponding force is the one that gets
averaged out over the fast motion of the middle oscillator.

With this notation, the Liouville operator XH = ∂pH ∂q − ∂qH ∂p for the total
Hamiltonian can be broken up as follows:

XH = XH0 +XH2 +XH1 + (q0 + q2 − 2q1) ∂p1 + q1(∂p0 + ∂p2) .

Recall that the generator of the stochastic dynamics is given by

L = XH − γ0p0∂p0 + γ0T0∂
2
p0 − γ2p2∂p2 + γ2T2∂

2
p2 .

The space L2(e−βH dp dq) isometric to L2 via the operator Kf = e−βH/2f . This
shows that L is conjugate to the operator L̃ = KLK−1 on the flat L2 space given by

L̃ = XH +
∑
i=0,2

γiTi

(
(αi − α∗i )pi∂pi + ∂2

pi − αiα
∗
i p

2
i + αi

)
= XH + γ0T0L0

OU + γ2T2L2
OU .

where we set
αi =

β

2
, α∗i =

1
Ti
− β

2
.

Remark 3.10 Here we see the importance of the condition β < 2 min{β0, β2}: it
makes sure that the coefficients in front of p2

i are strictly negative. If this is not the
case, L̃ is not dissipative anymore and does therefore not generate a C0-semigroup on
L2(e−βH dp dq).
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The main result of this section is:

Theorem 3.11 If k ≥ 2, then the operator L̃ does not have compact resolvent for any
β < 2 min{β0, β2}. If k > 2, then it has essential spectrum at 0.

Proof. The aim is to construct a sequence ϕn of approximate eigenfunctions such that
all the ϕn are mutually orthogonal, ‖ϕn‖ = 1 and ‖L̃ϕn‖ either stays bounded or
converges to 0. By Propositions 3.2 and 3.3, this would then immediately imply a lack
of compactness for the resolvent of L̃, or even the presence of essential spectrum at
0. Since the spectral properties of L̃ and of its adjoint L̃∗ are the same, we can also
construct such a sequence of approximate eigenfunctions for L̃∗ instead. They can
then be interpreted as approximate invariant measures for the dynamic (1.5). Since it
seems to be a little bit easier to get an intuition about densities of approximate invariant
measures rather than about approximately invariant observables, this is what we are
going to do in this section.

The adjoint of L̃ is given by

L̃∗ = −XH + γ0T0(L0
OU)∗ + γ2T2(L2

OU)∗

(LiOU)∗ = (α∗i − αi)pi∂pi + ∂2
pi − αiα

∗
i p

2
i + α∗i .

Direct calculation shows that exp(−αiHi) is an eigenfunction with eigenvalue 0 for
LiOU and exp(−α∗iHi) is an eigenfunction with eigenvalue 0 for (LiOU)∗ with i ∈ {0, 2}.
However, if T0 6= T2 (and therefore α0 6= α2) it is not possible in general to find
a closed expression for an eigenfunction with eigenvalue 0 for L̃∗. Note also that
αi = α∗i if and only if Ti = 1/β, which is not surprising since in this case LiOU is
self-adjoint.

Choose now a function χ : R → [0, 1] which is smooth and compactly supported
on [1, 2] and set for example En = 3n, so that the functions χ(H1/En) have disjoint
support. The formal calculation performed in Section 2 suggests that when the energy
of the middle oscillator is large, the dynamic of (1.5) keeps that energy approximately
constant, while the two boundary oscillators equilibrate approximately at Gibbs mea-
sures at temperatures T0 and T2 respectively. Our first guess would be therefore to
build approximate eigenfunctions for L̃ and L̃∗ by setting

ϕn = Cne
−α0H0−α2H2χ(H1/En) , ϕ∗n = C∗ne

−α∗0H0−α∗2H2χ(H1/En) .

Here, the constants Cn and C∗n are chosen such that ‖ϕn‖ = ‖ϕ∗n‖ = 1. From

Lemma 3.8, one infers that Cn ∝ C∗n ∝ E
− 1

4k−
1
4

n . With this guess, we get

L̃ϕn = Cne
−α0H0−α2H2

(p1(q0 + q2 − 2q1)
En

χ′
(H1

En

)
− q1(α0p0 + α2p2)χ

(H1

En

))
,

and similarly for L̃∗ϕ∗n. Since p1 ≈ E
1
2
n � En (on the support of ϕn), the first term

goes to 0 in L2. The second term however goes to∞ because of the factor q1, so we
have to be a little bit more careful in our analysis.

The problem is that we have not so far exploited the fact that we also know approx-
imately what the fast oscillations superimposed over the slow dynamic of the boundary
oscillators look like, see (2.5). These oscillations can be expressed as a function Φ of
the middle oscillator, solution to the Poisson equation

XHfΦ(P,Q) = −Q . (3.4)
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By Proposition 3.7, this equation has a unique solution that averages to 0 along orbits
of the solutions corresponding to Hf . Furthermore, Φ scales like H

1
k−

1
2

f . In particular,
we note that Φ is bounded when k = 2 and converges to 0 at large energies when
k > 2.

Our next guess is therefore to compensate for these fast oscillations by setting p̄i =
pi + Φ(p1, q1) and taking

ϕn = Cn exp
(
−α0H0(p̄0, q0)− α2H2(p̄2, q2)

)
χ
(H1

En

)
.

Observe at this stage that H1 = Hf (p1, q1), so that we can make use of (3.4) when
computing XH1ϕn. One has, for i = 0, 2:

XHiϕn = −αi(qi|qi|2k−2 + qi)Φϕn ,
XH1ϕn = α0p̄0q1ϕn + α2p̄2q1ϕn , (3.5)

q1(∂p0 + ∂p2)ϕn = −α0p̄0q1ϕn − α2p̄2q1ϕn , (3.6)

(q0 + q2 − 2q1)∂p1ϕn = (q0 + q2 − 2q1)
(
−(α0p̄0 + α2p̄2)∂PΦ +

p1

En
χ′

χ

)
ϕn ,

LiOUϕn = αiΦ((αi + α∗i )pi + αiΦ)ϕn .

Here, we have omitted the argument (p1, q1) of Φ and the argument H1/E of χ and χ′

for the sake of simplicity. Note now that (3.5) and (3.6) cancel each other out exactly.
It follows from Lemma 3.8 that

‖XHiϕn‖ . E
1
k−

1
2

n ,

‖(q0 + q2 − 2q1)∂p1ϕn‖ . (1 + E
1
2k
n )(E

1
k−1
n + E−

1
2

n ) . E
1
2k−

1
2

n ,

‖LiOUϕn‖ . E
1
k−

1
2

n + E
2
k−1
n . E

1
k−

1
2

n .

Note that the exponent 1
4 + 1

4k appearing in Lemma 3.8 is precisely cancelled by the
normalisation constantCn. We also used here the symbol Ψ1 . Ψ2 for two expressions
Ψi as a shorthand for “there exists a constant C such that Ψ1 ≤ CΨ2.” It follows from
the above bounds that ‖Lϕn‖ . E

1
k−

1
2

n .
It is possible to construct approximate eigenfunctions ϕ∗n forL∗ similarly by setting

ϕ∗n = Cn exp
(
−α∗0H0(p̄0, q0)− α∗2H2(p̄2, q2)

)
χ
(H1

En

)
.

Note now that the only difference between L and L∗ is that one changes the sign of
XH and switches αi and α∗i . This shows that the cancellation between (3.5) and (3.6)

still takes place when applying L∗ to ϕ∗n, so that ‖L∗ϕ∗n‖ . E
1
k−

1
2

n as above.
If k = 2, it follows that there exists a constant C such that ‖Lϕn‖+ ‖L∗ϕ∗n‖ ≤ C

for every n. If k > 2, all the exponents appearing the the above expressions are
negative, so that limn→∞(‖Lϕn‖+ ‖L∗ϕ∗n‖) = 0. Applying Propositions 3.2 and 3.3
concludes the proof of the theorem.

Remark 3.12 It is clear from the proof that the exact same result also holds for a
chain consisting of 4 oscillators instead of 3. One can construct approximate invariant
measures in exactly the same way, but one has the additional freedom of choosing to
take the energy of either of the two middle oscillators to be large.
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3.3 Longer chain
In this section, we consider a chain of length N + 1 for N ≥ 4. We will show that
if k > 3

2 , then the generator of the dynamic has essential spectrum at 0. To this end,
define similarly as before

H0 =
p2
0 + p2

1

2
+
|q0|2k + |q1|2k

2k
+

(q0 − q1)2 + q21
2

,

Hr =
q23
2

+
N∑
i=3

(p2
i

2
+
|qi|2k

2k

)
+

N∑
i=4

(qi − qi−1)2

2
,

Hc =
p2
2

2
+
|q2|2k

2
,

so that

XH = XH0 +XHr +XHc + (q1 + q3 − 2q2)∂p2 + q2(∂p1 + ∂p3) .

As in the previous section, we consider the operator L̃ on the flat L2 space given by

L̃ = XH + γ0T0L0
OU + γNTNLrOU .

We have

Theorem 3.13 If N + 1 ≥ 5 and k > 3
2 , then the operator L̃ has essential spectrum

at 0. If k = 3
2 , it does not have compact resolvent. As previously, these statements are

independent of the value of β < 2 min{β0, βN}.

Proof. Let Φ be defined as in the previous subsection. In this section, we do not only
add a corrector term to p1 and p3, but also to q1 and q3. We define Φ(2) to be the
solution to the Poisson equation XHfΦ(2) = Φ and we define new variables p̄ and q̄ by

p̄i = pi + Φ(p2, q2) , q̄i = qi + Φ(2)(p2, q2) ,

for i = 1, 3 and (p̄i, q̄i) = (pi, qi) otherwise. With this notation, we set as before

ϕn = Cn exp(−α0H0(p̄, q̄)− αNHr(p̄, q̄))χ(Hc/En) .

In order to compute XHϕn, let us first apply XH to p̄i and q̄i:

XH q̄0 = p̄0 ,
XH p̄0 = −q̄0|q̄0|2k−2 + q̄1 − q̄0 − Φ(2) ,
XH q̄1 = p̄1 + (q0 + q2 − 2q1)∂PΦ(2) ,
XH p̄1 = −q̄1|q̄1|2k−2 + q̄0 − 2q̄1

+ (q̄1|q̄1|2k−2 − q1|q1|2k−2) + (q0 + q2 − 2q1)∂PΦ + 2Φ(2) .

Hence

XHH0(p̄, q̄) = −p̄0Φ(2) − (q̄1|q̄1|2k−1 + 2q̄1 − q̄0)(q0 + q2 − 2q1)∂PΦ(2) (3.7)
+ p̄1(q̄1|q̄1|2k−2 − q1|q1|2k−2) + p̄1(q0 + q2 − 2q1)∂PΦ + 2p̄1Φ(2)

= R1 +R2 +R3 +R4 +R5 ,
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and similarly for XHHr(p̄, q̄) by symmetry. We have furthermore

XHHc = p2(q1 + q3 − 2q2) ,

so that
XHχ(Hc/En) =

q1 + q3 − 2q2
En

p2χ
′(Hc/En) .

Since L0
OUϕn = LrOUϕn = 0, we thus have

L̃ϕn =
(
−α0XHH0(p̄, q̄)− αNXHHr(p̄, q̄) +

XHχ(Hc/En)
χ(Hc/En)

)
ϕn .

We bound the terms appearing in this expression in the same way as in the previous
subsection. Since Φ scales like H

1
k−

1
2

f and Φ(2) scales like H
3
2k−1

f , Lemma 3.8 shows
that

‖R1ϕn‖ . E
3
2k−1
n , ‖R2ϕn‖ . (1 + E

1
2k
n )E

3
2k−

3
2

n . E
2
k−

3
2

n ,

‖R3ϕn‖ . E
3
2k−1
n , ‖R4ϕn‖ . (1 + E

1
2k
n )E

1
k−1
n . E

3
2k−1
n ,

‖R5ϕn‖ . E
3
2k−1
n , ‖XHχχ ϕn‖ . (1 + E

1
2k
n )E−

1
2

n . E
1
2k−

1
2

n .

Collecting all these bounds, we obtain ‖L̃ϕn‖ . max{E
3
2k−1
n , E

1
2k−

1
2

n }. As before, if
we set

ϕ∗n = Cn exp(−α∗0H0(p̄, q̄)− α∗NHr(p̄, q̄))χ(Hc/En) ,

we obtain the same bounds for ‖L̃∗ϕ∗n‖. The exponents appearing in all of these bounds
are strictly negative whenever k > 3/2, thus concluding the proof of Theorem 3.13.

4 Effective dynamics

From now on, we study the case of three oscillators in detail. In this section, we derive
an effective dynamic for the outer oscillators that is valid in the regime where most of
the energy is located in the center oscillator. More precisely, we show that there exists
a change of variable (pi, qi) 7→ (p̄i, q̄i) for i = 0, 2 such that the equations of motion
for (p̄i, q̄i) decouple (to leading order) from the rest of the system, provided that the
energy of the middle oscillator is large.

As before, we will use throughout this section the symbol Ψ1 . Ψ2 for two ex-
pressions Ψi as a shorthand for “there exists a constant C such that Ψ1 ≤ CΨ2.”
The constant C depends in general on the parameters of the model, but is of course
independent of the arguments of the Ψi.

Theorem 4.1 Assume that k > 3
2 . There exist smooth functions Φip and Φiq depending

on (pi, qi, p1, q1) such that if we make the change of variables p̄i = pi + Φip and
q̄i = qi + Φiq (for i = 0, 2), the equations of motion for (p̄i, q̄i) are given by

dq̄i = p̄i dt+Riq dt+ Σiq dwi

dp̄i = −q̄i|q̄i|2k−2 dt− q̄i dt− γip̄i dt+Rip dt+ Σip dwi
(4.1)
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for some functions Rip, Riq , Σip and Σiq . Furthermore, the error terms R and Σ satisfy
the bounds

|Rip| . (Ē0 + Ē2)
1
2−δ |Riq| . Ē

1
2k−δ
i +

Ē
1
2k
2−i
Ēδi

|Σip| . 1 |Σiq| . Ē
− 1

2
i

(4.2)

for some δ > 0. Here, the energies Ēi are given by Ēi = 1 +Hf (p̄i, q̄i).

Proof. This theorem gives a change of variables where the high-speed oscillations due
to the presence of a breather located on the middle oscillator (that is the case where
E0, E2 � E1) have been decoupled from the remaining degrees of freedom, leaving
an effective ”averaged out” dynamic. Recalling the formal calculation performed in
Section 2, we see that when the energy E is predominantly concentrated in the central
oscillator, then the amplitudes of the oscillations for pi and qi, i = 0, 2 scale to leading
order like E

1
k−

1
2 and E

3
2k−1 respectively. This indicates that there are natural break-

points at k = 2 and k = 3/2. When k ≥ 2, the oscillations of both the pi and the qi are
bounded as E increases, so that they can be removed by a change of variables which is
a bounded perturbation of the identity.

When k < 2, the amplitude of the oscillations of the pi increases with E, but
as long as k ≥ 3/2, the amplitude of the qi does not. This growth will cause extra
difficulties. If we consider k < 3/2, both amplitudes would grow with E, leading
to further complications. Since our goal is to outline the ideas without seeking the
greatest generality, we resist the temptation to analyze all cases and restrict ourselves
to the case k > 3/2.

Before we proceed, let us compute the expressions R and Σ for a generic choice of
Φip and Φiq . Applying Itôs formula to p̄i and q̄i, we obtain

Rip = V ′(qi + Φiq)− V ′(qi) + Φiq + γiΦip + LΦip + q1

Riq = LΦiq − Φip , Σip = σi(1 + ∂piΦ
i
p) , Σiq = σi ∂piΦ

i
q .

(4.3)

Here and in the sequel we write V (q) as a shorthand for |q|
2k

2k and σi as a shorthand for√
2γiTi.

The case k ≥ 2. The only “bad” term in the equations of motion for (pi, qi) is the
q1 in the right hand side of the equation for pi. The case k ≥ 2 is much easier than the
case k < 2 since the system is more “rigid” in the later case. One can then simply take
Φiq = 0 and Φip = Φ(p1, q1), where Φ is the centered solution to the Poisson equation

XHfΦ = R(Q)−Q (4.4)

and R : R → [0, 1] is a smooth odd function such that R(x) = x for |x| ≤ 1 and
R(x) = 0 for |x| ≥ 2. Making this choice of Φip and Φiq in (4.3) yields

Σiq = 0 , Riq = −Φ(p1, q1) ,

Σip = σi , Rip = γiΦ(p1, q1) + ∂PΦ(p1, q1)(q0 + q2 − 2q1) +R(q1)

Since the function Φ scales like H
1
k−

1
2

f outside of a compact set, it can be checked
easily that the bounds (4.2) hold, provided that k ≥ 2. Note that in this case, Ei and
Ēi are equivalent in the sense that E1 . Ēi . Ei since Φ is bounded. Therefore all
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occurrences of Ej in the bounds can be replaced by Ēj at the cost of multiplicative
constants.

The case 3/2 < k < 2. We are now going to assume that k < 2, which the more
delicate case. Note that the second and third terms inRip above satisfy the bounds (4.2)
(with Ej instead of Ēj , but this problem will be dealt with later) provided that Q∂PΦ
scales like Ĥθ for some θ ≤ 0. This is the case when k ≥ 3

2 , which is one of the
reasons why we restrict ourselves to this case. Therefore, only the terms involving Φ
scale worse then the desired bounds on the error terms and need to be eliminated. This
motivates the introduction of the solution Φ(2) to the Poisson equation

XHfΦ(2) = Φ . (4.5)

Note that Φ(2) scales like Ĥ
3
2k−1 outside of a compact set, so that it is bounded if

k ≥ 3
2 . It would be tempting at this point to simply subtract γiΦ(2)(p1, q1) to pi and

add Φ(2)(p1, q1) to qi.
This would however introduce correction terms that grow faster than the bounds in

(4.2). The trick is to realise that these correction terms are multiplied with terms that
go to 0 as the energy of the middle oscillator becomes large. We therefore multiply Φ(2)

with a cutoff function that makes sure that this second round of correction is applied
only when the energy of the middle oscillator is large compared to the energy of the
boundary oscillators.

Let ϕ : R+ → [0, 1] be a smooth increasing function such that ϕ(x) = 0 for x ≤ 1
and ϕ(x) = 1 for x ≥ 2. Let furthermore α be an exponent to de determined later and
set

Φip = Φ(p1, q1)− γiΦ(2)(p1, q1) , (4.6a)

Φiq = ϕ(E1/E
α
i )Φ(2)(p1, q1) , (4.6b)

where we defined Ei = 1+Hf (pi, qi). In the sequel, we are going to use the shorthand
ϕαi = ϕ(E1/E

α
i ) and we will omit the arguments of Φ, Φ(2) and ϕαi in order to simplify

notations. Before we turn to the verification of the bounds (4.2), we remark that since
k < 2, Ei and Ēi are not equivalent for i = 0, 2. Since k ≥ 3/2, E1 and Ē1 are
however equivalent in the sense that E1 . Ē1 . E1. Since we wish to bound the
remainder in terms of powers of Ēi and not Ei, we are now going to show how these
quantities are related. From the definitions of p̄i and q̄i, we have for i = 0, 2 the
estimate

|Ēi − Ei| . 1 + |piΦ| . 1 + εp2
i +

1
ε

Φ2 . 1 + εEi +
1
ε
E

2
k−1
1 .

By choosing ε sufficiently small and moving the term εEi to the left hand side, we thus
obtain the two bounds

Ei . Ēi + E
2
k−1
1 , Ēi . Ei + E

2
k−1
1 . (4.7)

Writing g = E1/E
α
i , and applying Itô’s formula to g, we obtain

dg = E−αi p1(q0 + q2 − 2q1) dt− αE1E
−α−1
i (

σ2
i

2
− γip2

i + q1 − qi) dt

+
α(α+ 1)

2
E1E

−α−2
i σ2

i p
2
i dt− αE1E

−α−1
i σipi dwi

= I1 dt+ I2 dt+ I3 dt+ dM (t) .
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M is a martingale since, on any finite time interval, it is easy to get control over the
expected value of any power of the total energy. (Even a bound which grows expo-
nentially with the length of the time interval is sufficient.) Bounding each of the three
terms Ij separately we obtain:

|I1| . E
−α+ 1

2k
i E

1
2
1 + E−αi E

1
2k
2−iE

1
2
1 + E−αi E

1
2+ 1

2k
1 ,

|I2| . E1E
−α
i + E

1+ 1
2k

1 E−α−1
i ,

|I3| . E1E
−α−1
i .

Applying Itô’s formula to ϕαi , we get

Lϕαi = ϕ′(E1/E
α
i )Lg + α2σ2

i ϕ
′′(E1/E

α
i )E2

1E
−2α−2
i p2

i = I4 + I5 .

Note now that ϕ′ and ϕ′′ are zero outside the interval [1, 2]. Therefore, we have E1 .
Eαi . E1 on the support of these functions. This line of reasoning yields for 1/k ≤
α ≤ 2k the bounds:

|I4| . E
1
2 ( 1
k−α)

i + E
−α2
i E

1
2k
2−i + E

α
2 ( 1
k−1)

i + 1 + E
α
2k−1
i + E−1

i . E
1
2k
2−i ,

|I5| . E−1
i . 1 .

Collecting these estimates and taking into account the support of ϕ′ and ϕ′′ produces
|Lϕαi | . (1 + E

1
2k
2−i)12Eαi ≥E1≥Eαi .

Recall that, from the scalings given in Lemma 3.5 of the solutions to the Poisson
equation (3.2) and the definitions (4.4) and (4.5) of Φ and Φ(2), we have that |Φ| .

E
1
k−

1
2

1 , |∂PΦ| . E
1
k−1
1 , |Φ(2)| . E

3
2k−1
1 , |∂PΦ(2)| . E

3
2k−

3
2

1 . We will also use the
fact that, from the definition of ϕαi combined with (4.7), one has both bounds

Eαi . E1 , Ēαi . E1 , (4.8)

on the support of ϕαi . Furthermore, one has the bound E1 . Eαi on the support of
1− ϕαi which, by (4.7), implies that one also has E1 . Ēαi on the support of 1− ϕαi .

Using the definitions of Φip and Φiq given in (4.6), equation (4.3) yields

Riq = −Φ + ϕαi LΦ(2) + (Lϕαi )Φ(2) + γiΦ(2) .

We now make use of the definitions of L and Φ(2) to obtain

LΦ(2) = Φ + (q0 + q2 − 2q1)∂PΦ(2) .

This allows us to obtain the following bounds for Riq:

|Riq| = |(ϕαi − 1)Φ + ϕαi (q0 + q2 − 2q1) ∂PΦ(2) + (Lϕαi )Φ(2) + γiΦ(2)| ,

. (1− ϕαi )E
1
k−

1
2

1 + ϕαi E
− 3

2 (1− 1
k )

1 (E
1
2k
i + E

1
2k
1 + E

1
2k
2−i)

+ E
1
2k
2−iE

3
2k−1
1 12Eαi ≥E1≥Eαi + 1

= I6 + I7 + I8 + 1 .

Our aim is to bound the terms I6, I7, I8 in terms of the Ēj’s instead of the Ej’s. To do
so, we now fix

α =
3
2
.



EFFECTIVE DYNAMICS 19

Since k ∈ (3/2, 2), α ∈ (1/k, 2k) which is the constraint that we had to impose earlier.
Since, as mentioned above, E1 . Ēαi on the support of 1− ϕαi , one has

|I6| . Ē
α
k−

α
2

i .

One can check that the choice α = 3/2 implies that there exists δ > 0 so that αk −
α
2 ≤

1
2k − δ (actually, one can set δ = 1/12 for the range of values of k considered here).

This shows that |I6| . Ē
1
2k−δ
i as required.

To bound I7, we make use of the fact that

E
1
2k
i + E

1
2k
2−i . Ē

1
2k
i + E

1
k2
− 1

2k
1 + Ē

1
2k
2−i . Ē

1
2k
i + E

1
2k
1 + Ē

1
2k
2−i , (4.9)

so that, by virtue of (4.8),

|I7| . ϕαi E
− 3

2 (1− 1
k )

1 (Ē
1
2k
i + Ē

1
2k
2−i) + ϕαi E

2
k−

3
2

1

. Ē−δi (Ē
1
2k
i + Ē

1
2k
2−i) + 1 .

We finally turn to I8. We first remark that, by (4.7) and the fact that α( 2
k − 1) < 1,

one has Ēαi . E1 . Ēαi on the support of the indicator function 1A where A =
{2Eαi ≥ E1 ≥ Eαi }. We thus obtain

|I8| . E
1
2k
2−iĒ

3α
2k−α
i 1A . (Ē

1
2k
2−i + E

1
2k ( 2

k−1)
1 )Ē

3α
2k−α
i 1A

. (Ē
1
2k
2−i + Ē

α
2k ( 2

k−1)
i )Ē

3α
2k−α
i . Ē

1
2k
2−iĒ

−δ
i + Ē

α 1+k−k2

k2

i .

One can check that, for α = 3/2 and the range of k’s of interest, the exponent of

the last term is strictly smaller than 1/2k. Therefore, |I8| . Ē−δi (Ē
1
2k
i + Ē

1
2k
2−i) as

required, choosing δ smaller if necessary. Collecting all of these bounds shows that Riq
does indeed satisfy the bound advertised in (4.2).

Turning to Rip, (4.3) yields

|Rip| = |R(q1) + (q0 + q2 − 2q1) (∂PΦ− γi∂PΦ(2))− (γ2
i − ϕαi )Φ(2)

+ V ′(qi + ϕαi Φ(2))− V ′(qi)| ,

. 1 + (Ē
1
2k
0 + Ē

1
2k
2 + E

1
2k
1 )E

1
k−1
1 + 1 + |V ′(qi + ϕαi Φ(2))− V ′(qi)| .

Here, we made use of (4.9) and of (4.7). Since, for k ≥ 3/2, Φ(2) is a bounded function,
one has the further bound

|V ′(qi + ϕαi Φ(2))− V ′(qi)| = |V ′(q̄i)− V ′(q̄i − ϕαi Φ(2))|

. (1 + |q̄i|)2k−2|Φ(2)| . Ē
1− 1

k
i . Ē

1
2−δ
i ,

for δ sufficiently small. Collecting these bounds and using the fact that k > 3/2, we
obtain

|Rip| . Ē
1
2k
0 + Ē

1
2k
2 + Ē

1
2−δ
i . Ē

1
2−δ
i + Ē

1
2−δ
2−i , (4.10)

which is indeed of the form (4.2).
Lastly, the Σ-terms can be bounded by

|Σiq| = |ασiϕ′(E1/E
α
i )Φ(2)E1E

−α−1
i pi| . Ē

− 1
2

i ,
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Σip = σi ,

where we made use of the fact that, like in the bound of I8, E1, Eα1 and Ēαi are
equivalent on the support of ϕ′(E1/E

α
i ). This concludes the proof of Theorem 4.1.

In the case k > 2, it will be useful in the sequel to have a better approximation of
the dynamics that yields smaller error terms in the regime where most of the energy is
located in the middle oscillator:

Theorem 4.2 Assume that k > 2. There exist smooth functions Φip and Φiq depending
on (pi, qi, p1, q1) such that if we make the change of variables p̄i = pi + Φip and
q̄i = qi + Φiq (for i = 0, 2), the equations of motion for (p̄i, q̄i) are given by

dq̄i = p̄i dt+Riq dt

dp̄i = −q̄i|q̄i|2k−2 dt− q̄i dt− γip̄i dt+Rip dt+ σi dwi
(4.11)

for some adapted functions processes Rip and Riq . Furthermore, the error terms R
satisfy the bounds

|Rip| . (E0 + E2)2H
3
2k−1 |Riq| . (E0 + E2)H

3
2k−1 . (4.12)

Here, the energies Ei are given as before by Ei = 1 + Hf (p̄i, q̄i) and H is the total
Hamiltonian of our system.

Proof. Following the proof of Theorem 4.1, we set as in (4.6)

Φip = Φ(p1, q1)− γiΦ(2)(p1, q1) ,

Φiq = Φ(2)(p1, q1) .

This yields for Rip and Riq the expressions

Riq = (q0 + q2 − 2q1)∂PΦ(2) + γiΦ(2) ,

Rip = R(q1) + (q0 + q2 − 2q1) (∂PΦ− γi∂PΦ(2))− (γ2
i − 1)Φ(2)

+ V ′(qi + Φ(2))− V ′(qi) .

The desired bounds now follow from Lemma 4.3 below, together with the fact that both
Φ(2) and Q∂PΦ scale like H

3
2k−1

f .

Lemma 4.3 For every α > 0, the bound

x−α ≤ (x+ y)−α max{2α, yα}

holds for every x, y ≥ 1.

Proof. If x ≥ y, then x−α ≤ 2α(2x)−α ≤ 2α(x + y)−α. If on the other hand x ≤ y,
then x−α ≤ 1 ≤ yα(x+ y)−α.



EXISTENCE OF AN INVARIANT MEASURE 21

5 Existence of an invariant measure

5.1 General strategy
To prove the existence of an invariant measure, our aim is to construct a type of Lya-
punov function V(p, q) such that V(p, q)→∞ as |(p, q)| → ∞ and LV(p, q)→ −∞ as
|(p, q)| → ∞. Given such a function, the existence of an invariant measure will follow
from the following proposition which is a variant of the classical Kryloff-Bogoliouboff
construction [KB37, Has80, p. 52]:

Proposition 5.1 Consider an SDE on Rn with smooth coefficients and denote its gen-
erator by L. Assume that the SDE has global solutions and generates a Feller semi-
group. If there exists a smooth function V : Rn → [0,∞) such that the level sets
{x : LV(x) ≥ C} are compact for every C, then the SDE possesses an invariant
probability measure µ. Furthermore, the function LV is integrable with respect to µ
and

∫
LV(x)µ(dx) = 0.

We will construct the function V in steps by analyzing the dynamic in the limit
of various energies being large and then draw inspiration from the structure of these
limiting regimes to construct V . Operationally, we will make an initial guess for V and
then augment it by a series of correction terms.

Proof of Proposition 5.1. Denote by xt the solution to the SDE starting at some (de-
terministic) initial condition x0. Applying Itô’s formula to V(xt), we get

dV(xt) = (LV)(xt) ds+ dM (t) ,

for some continuous local martingale M . Therefore, there exists an increasing se-
quence τN of stopping times converging to +∞ such that M (t ∧ τN ) are martingales.

EV(xt∧τN )− V(x0)− E
∫ t∧τN

0

(LV)(xs) ds = 0 .

Since V is positive this shows that, for every K > 0,

E
∫ t∧τN

0

(K − (LV)(xs)) ds ≤ V(x0) +Kt .

Taking K large enough so that K −LV ≥ 0, we can apply the monotone convergence
theorem to take the limit N →∞ and obtain

−E
∫ t

0

(LV)(xs) ds ≤ V(x0) .

Now, by assumption the sets AR = {x : −LV(x) ≤ R} are compact for all R. In
particular, this implies that there exist a K > 0 so that −LV(x) + K ≥ 0 for all x.
Now observe that for R > −K

1
t

∫ t

0

P(xs 6∈ AR)ds =
1
t

∫ t

0

P(− LV(xs) +K > R+K)ds

≤ 1
t

∫ t

0

K − ELV(xs)
R+K

ds ≤ K + V(x0)
K +R

.
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Therefore, the sequence of measures µt defined for measurable sets A by

µt(A) =
1
t

∫ t

0

Px0 (xs ∈ A) ds

is tight. Hence the Kryloff-Bogoliouboff construction [KB37, Has80, p. 52] guarantees
the existence of an invariant measure. The last statement then follows from Lebesgue’s
dominated convergence theorem.

Remark 5.2 We will actually be able to construct a positive smooth function V with
compact level sets that has the property that

LV ≤ C1 − C2Vα ,

for some positive constants Ci and some (typically quite small) α ∈ (0, 1]. In this
case, it is known [DFG06] that one does not only have the existence of an invariant
measure, but the transition probabilities converge towards it at rateO(t−α/(1−α)) in the
total variation distance. We believe that this convergence actually takes place at a much
faster rate, but such a statement is beyond our reach at the moment. See also [Ver97]
for related results on subexponential mixing for SDEs.

5.2 Construction of the Lyapunov function
Recall the change of variables (p, q) 7→ (p̄, q̄) from Theorem 4.1 that leads to an effec-
tive decoupled dynamic for the outside oscillators. In order to construct the Lyapunov
function V , we proceed in two steps:

1. We gain good control over the dissipation of the energy stored in the outside
oscillators. This will be the content of Proposition 5.3.

2. We use this in order to get control over the dissipation of the total energy of the
system in Theorem 5.6.

Proposition 5.3 There is a function U0 equivalent to Hf (p̄0, q̄0) +Hf (p̄2, q̄2) and such
that, for every m > 0, there exist constants Cm > 0 and cm > 0 such that LUm0 ≤
Cm − cmUm0 .

Proof. Inspired by (4.1), we define an effective Hamiltonian H0 by

H0(p, q) =
p2

2
+
|q|2k

2k
+
q2

2
+ 1 .

(Note that H0 is equivalent to Hf .) We set

U0 = H0(p̄0, q̄0) +H0(p̄2, q̄2) + γ(p̄0q̄0 + p̄2q̄2)

for some constant γ to be determined later. If γ is sufficiently small and since k ≥ 1,
this function is indeed equivalent to Ē0 + Ē2 = Hf (p̄0, q̄0) + Hf (p̄2, q̄2). Applying
Itô’s formula to it, we get from (4.1) that

dU0 =
∑
i=0,2

(
(γ − γi)p̄2

i − γ(|q̄i|2k + |q̄i|2)− γγip̄iq̄i + (p̄i + γq̄i)Rip

+ (|q̄i|2k−2q̄i + γp̄i)Riq + (k − 1
2 )|q̄i|2k−2|Σiq|

2 + 1
2 |Σ

i
p|

2 + γΣipΣ
i
q

)
dt
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+
∑
i=0,2

(
(p̄i + γq̄i)Σip + (|q̄i|2k−2q̄i + q̄i + γp̄i)Σiq

)
dwi .

Fixing γ = 1
2 min{1, γ0, γ2}, we obtain for some constant C

dU0 ≤ −2γU0 dt+ C
∑
i=0,2

(
|p̄iq̄i|+ |p̄i + γq̄i||Rip| (5.1)

+ (|q̄i|2k−1 + |p̄i|)|Riq|+ (1 + |q̄i|2k−2)|Σiq|
2 + |Σip|

2
)
dt+ dM (t) .

Here, M is a continuous Martingale with quadratic variation bounded by

d〈M〉(t)
dt

≤ C
∑
i=0,2

((|p̄i|2 + |q̄i|2)|Σip|2 + (1 + |q̄i|4k−2 + |p̄i|2)|Σiq|2) .

Using the notation and the bounds of Theorem 4.1, we have

|p̄iq̄i| . Ē
1
2+ 1

2k
i , |p̄i + γq̄i||Rip| . Ē1−δ

i ,

(|q̄i|2k−1 + |p̄i|)|Riq| . Ē1−δ
i + Ē1−δ

2−i , (1 + |q̄i|2k−2)|Σiq|
2 . Ē

1
2−

1
k

i .

Since all the powers appearing on the right hand sides of these bounds are strictly less
than 1, we have shown that

LU0 ≤ C − γU0 ,

for some (different) constant C.
In order to bound the quadratic variation of M , note that one has

(|p̄i|2 + |q̄i|2)|Σip|2 . Ēi , (1 + |q̄i|4k−2 + |p̄i|2)|Σiq|2 . Ē
1− 1

k
i .

In particular, one has for some positive constant C

〈M〉(t) ≤ C
∫ t

0

(1 + U0(s)) ds .

The claim now follows by applying Itô’s formula to Um0 .

Remark 5.4 Observe that one could also apply Itô’s formula to exp(θU0) for suffi-
ciently small θ and obtain L exp(θU0) ≤ C − α exp(θU0).

Remark 5.5 If k ≥ 2, then U0 is also equivalent to Hf (p0, q0) + Hf (p2, q2). This is
not the case when k < 2.

We are now ready to prove the main theorem of this section. Recall that H is the
total Hamiltonian defined in (1.4).

Theorem 5.6 Consider the equations of motion (2.1) with k > 3/2. Then there exists
a function V and constants c, C > 0 such that V ≥ cHα − C and such that LV ≤
C − cHα′ for some exponents α and α′.
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Proof. The idea is to work “modulo powers of U0.” Assume that we can find a function
U1 such that

U1 ≥ cHα − CUN0 , LU1 ≤ −cHα′ + CUN
′

0 , (5.2)

for some positive exponents α, α′ and some (possibly very large) exponents N , N ′.
We claim that it then suffices to take V = U1 + UN+N ′+1

0 . Note that

V ≥ cHα − CUN0 + UN+N ′+1
0 ≥ cHα − C ′ ,

for some constant C ′, and so V grows at infinity (has compact level sets). It then
follows from Proposition 5.3 and from (5.2) that

LV ≤ −cHα′ + CUN
′

0 + CN+N ′+1 − cN+N ′+1UN+N ′+1
0 ≤ C ′′ − cHα′ ,

for some constant C ′′, which is the desired bound. It therefore remains to construct a
function U1 satisfying (5.2).

The starting point for the construction of U1 is to apply Itô’s formula to Hn. Since
dH =

∑
i=0,2(−γipi dt+ 1

2σ
2
i dt+ piσi dwi), we have

dHn = nHn−2
∑
i=0,2

(
H(

σ2
i

2
− γip2

i ) dt+ 1
2 (n− 1)σ2

i p
2
i dt+Hσipidwi

)
. (5.3)

At this stage, we have to distinguish two cases, as in the proof of Theorem 4.1:
• If 3/2 < k < 2, then the motion of the interior oscillator induces large (i.e.

going to infinity with the energy of the middle oscillator) fluctuations in the
values of p0 and p2. Therefore, there will always be energy dissipation.

• If k ≥ 2, then the motion of the interior oscillator induces bounded (or small)
fluctuations in the values of p0 and p2. In this case, one can subtract a compen-
sator so that only fluctuations remain. There will be a few error terms that seem
to be larger than the dominant one, but they can hopefully just be eliminated
order by order.

The case 3/2 < k < 2: In contrast to the arguments in the proof of Theorem 4.1, this
is the “easy” case for this part of the proof. It follows from the proof of Theorem 4.1
that in this case p̄2

i is equivalent to p̂2
i with p̂i = pi − Φ(p1, q1). Since 2γip̂iΦ ≤

1
2γiΦ

2 + 2γip̂2
i , this allows us to obtain for LHn the bound

LHn ≤ nHn−1(Cn + γ0p̂
2
0 + γ2p̂

2
2 − 1

2 (γ0 + γ2)Φ2) ,

for some positive constant Cn. This in turn implies that

LHn ≤ Hn−1(C1 + C2U0 − n
2 (γ0 + γ2)Φ2) , (5.4)

for some constants Ci. Observe that one can use a similar calculation to obtain the
bound

|LHn| ≤ Hn−1(C1 + C2U0 + C3Φ2) , (5.5)

for some possibly different constants Ci.
Note that Φ2 scales like H

2
k−1

f which goes to infinity at high energies. We can thus
find a positive constant κk (which was introduced in (2.8)) and a functionR′ such that
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Φ2 − κkH
2
k−1

f +R′(Hf ) averages out to 0 in the sense of Proposition 3.7. We define
Ψ to be the solution to the Poisson equation

XHfΨ = Φ2 − κkH
2
k−1

f +R′(Hf ) . (5.6)

This function is smooth since R′ is precisely such that Ψ = 0 in a neighborhood of
the origin. The function Ψ then scales like H

5
2k−

3
2

f . In particular, Ψ and Q∂PΨ are
bounded.

With all these preliminaries done, we define

U1 = Hn + n
2 (γ0 + γ2)Hn−1Ψ .

Applying Itô’s formula to U1 and using (5.4), (5.5), and (5.6), we obtain

LU1 ≤ CHn−1(1 + U0) + C|Ψ|Hn−2(1 + U0 + Φ2)

+ n
2 (γ0 + γ2)Hn−1(−κkE

2
k−1
1 + (q0 + q2 − 2q1)∂PΨ) .

Since |Ψ|Φ2 . H and |(q0 + q2 − 2q1)∂PΨ| . U0, we have

LU1 ≤ −κkn2 (γ0 + γ2)Hn−1κkE
2
k−1
1 + CHn−1U0 , (5.7)

for some constant C.
We can check that U1 satisfies the first bound in (5.2), since Ψ grows slower thanH

and U0 is bounded from below by a positive constant. However, it is not clear a priori
from this expression that it U1 satisfies the second bound in (5.2).

One can check that
U0 ≥ c(E0 + E2)− CΦ2 ,

for some positive constants c and C. Furthermore, Φ2 scales like H
2
k−1

f which is
strictly smaller than Hf , so that

U0 + E1 ≥ cH .

In particular, there exists a constant C such that

H
2
k−1 ≤ C(E

2
k−1
1 + U

2
k−1
0 ) .

Inserting this into (5.7), we obtain

LU1 ≤ −cHn+ 2
k−2 + CHn−1U0 ,

for some constants c and C. Since 2
k −1 > 0, this shows the existence of a (sufficiently

large) power N such that

LU1 ≤ −cHn+ 2
k−2 + CUN0 ,

which is the desired bound.

The case k ≥ 2: The reasoning above only worked for k < 2 since in this case one has
n+ 2

k −2 > n−1. When k ≥ 2 the situation is slightly more delicate. Here, as before,
the energy dissipation mechanism comes from fluctuations of p2

0 and p2
2 around their

mean. However, the amplitude of these oscillations now decreases as the energy stored
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in the middle oscillator increases, so that we have to be more careful. In particular, p2
i

can no longer be treated as a perturbation with respect to Φ2, as we did in the previous
case.

The expression in (5.3) suggests that, in order to extract these small fluctuations,
we should compensate Hn by subtracting

Ξ = nHn−1[H0(p̄0, q̄0) +H0(p̄2, q̄2)] ,

where the “bar” variables are as in Theorem 4.2. Note that here, and anywhere from
this point on, we use the variables (p̄i, q̄i) from Theorem 4.2 and not from Theorem 4.1.
This is because we require a sufficiently good effective dynamics so that the error terms
are small with respect to Φ2. The bounds obtained in Theorem 4.1 are not sufficiently
small for that. Setting as before Ēi as a shorthand for Hf (p̄i, q̄i), one has

LΞ = nHn−2
∑
i=0,2

(
H(

σ2
i

2
− γip̄2

i ) + (n− 1)Ēi(
σ2
i

2
− γip2

i )

+ 1
2 (n− 1)(n− 2)ĒiH−1σ2

i p
2
i + (n− 1)σ2

i pip̄i

+H(p̄iRip + q̄i(|q̄i|2k−2 + 1)Riq)
)

The important term in this expression is nHn−1(σ
2
0+σ2

2
2 − γ0p̄

2
0 − γ2p̄

2
2), all the other

terms will be treated as perturbations. Setting U0
1 = Hn − Ξ, we obtain

LU0
1 = −nHn−1

∑
i=0,2

γi(p2
i − p̄2

i ) + E .

with

E = nHn−2
∑
i=0,2

(
−(n− 1)Ēi(

σ2
i

2
− γip2

i )−H(p̄iRip + q̄i(|q̄i|2k−2 + 1)Riq)

− 1
2 (n− 1)σ2

i ((n− 2)ĒiH−1p2
i − 2pip̄i + p2

i )
)
.

We can check that one has |E| . Hn−2+ 3
2kU2

0 so that, for every δ > 0, there exist
constants C and N such that the error term E is bounded by Hn+ 3

2k−2+δ + CUN0 .
At this stage, we use the explicit expression for p̄i to rewrite this bound as

LU0
1 ≤ −nHn−1

∑
i=0,2

γi(Φ2 + γ2
i (Φ(2))2 − 2γiΦΦ(2) + 2p̄i(γiΦ(2) − Φ)) + E .

This puts us now in a situation similar to (5.4), with the difference that, up to powers of
U0, the error term E is of order Hn−2+ 3

2k+δ instead of being of order Hn−1. Since Φ2

is larger than H
3
2k−1

f , this is the feature that will allow us to obtain the required bound.

Since Φ(2) scales like H
3
2k−1

f , we obtain in the same way as in the proof of Theo-

rem 4.2 that |Φ(2)| . H
3
2k−1U1− 3

2k
0 . This shows that

LU0
1 ≤ −nHn−1

∑
i=0,2

γi(Φ2 − 2p̄iΦ) + E2 , (5.8)

where the error term E2 satisfies the bound |E2| . Hn+ 3
2k−2+δ + CUN0 as before2.

2The interested reader can check that expanding the square around pi instead of p̄i would lead to trou-
blesome terms.
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Since these terms oscillate very rapidly, we would like to replace them by their
averaged effect over one period of the middle oscillator. To leading order, the terms
piΦ and Φ2 will average out to 0 and κkE

2
k−1
1 respectively. The latter contribution will

turn out to be the dominant term leading to an overall dissipation of energy. Defining
Ψ and Φ(2) as in (5.6) and (4.5) respectively, we finally set

U1 = U0
1 + nHn−1

∑
i=0,2

γi(Ψ− 2p̄iΦ(2)) . (5.9)

Our investigation of LU1 begins with

LHn−1Ψ = −Hn−1(κkE
2
k−1
1 − Φ2) +Hn−1

(
R′(E1) + (q0 + q2 − 2q1)∂PΨ

)
+ (n− 1)Hn−3Ψ

∑
i=0,2

(
H(

σ2
i

2
− γip2

i ) + 1
2 (n− 2)σ2

i p
2
i

)
= −Hn−1(κkE

2
k−1
1 − Φ2) + I9 + I10 .

Since the function R′ has compact support, we have for example |R′(E1)| . E−1
1 .

Using the trick from Lemma 4.3, this yields |R′(E1)| . H−1U0. This allows us to
obtain the bound

|I9| . Hn−2U0 +Hn−1+ 1
2kE

5
2k−2
1 . Hn−2U0 +Hn−3+ 3

kU2− 5
2k

0 .

Since Ψ is bounded, one furthermore has

|I10| . Hn−2U0 +Hn−3U0 .

Turning to the second term in LU1, we have

LHn−1p̄iΦ(2) = Hn−1p̄iΦ +Hn−1p̄i(q0 + q2 − 2q1)∂PΦ(2)

+ (n− 1)Hn−3p̄iΦ(2)
∑
j=0,2

(
H(

σ2
j

2
− γjp2

j ) + 1
2 (n− 2)σ2

j p
2
j

)
+Hn−1Φ(2)(−q̄i|q̄i|2k−2 − q̄i +Rip − γip̄i) + (n− 1)Hn−2σ2

i piΦ
(2)

= Hn−1p̄iΦ + I11 + I12 + I13 + I14 .

Using the bound on Rip from (4.12), the error terms appearing in this expression can be
bounded by

|I11| . Hn−1+ 1
2kU

1
2
0 E

3
2k−

3
2

1 . Hn− 5
2+ 2

kU2− 3
2k

0 ,

|I12| . Hn−2U
3
2
0 +Hn−3U

3
2
0 ,

|I13| . Hn−1E
3
2k−1
1 (U0 + U2

0H
3
2k−1) . Hn−2+ 3

2kU3− 3
2k

0 ,

|I14| . Hn−2U
1
2
0 .

By Young’s inequality, it can be checked that, for every δ > 0 there exist constants C
and N such that |Ij | ≤ Hn−2+ 3

2k+δ +CUN0 for j = 9, . . . , 14. Inserting these bounds
into (5.8) and (5.9), this shows that

LU1 ≤ −nκk(γ0 + γ2)Hn−1E
2
k−1
1 +Hn−2+ 3

2k+δ + CUN0 .
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Since 2
k − 1 ≤ 0 and since n − 2 + 2

k > n − 2 + 3
2k + δ for sufficiently small δ, we

finally obtain
LU1 ≤ − 1

2nκk(γ0 + γ2)Hn−2+ 2
k + CUN0 ,

for a possibly different constant C. This is precisely the bound (5.2) which was the
missing piece to complete the proof of Theorem 5.6, the principal result of this article.
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