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Abstract

We consider the stochastic Swift-Hohenberg equation on a large domain near its
change of stability. We show that, under the appropriate scaling, its solutions
can be approximated by a periodic wave, which is modulated by the solutions
to a stochastic Ginzburg-Landau equation. We then proceed to show that this
approximation also extends to the invariant measures of these equations.
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1 Introduction

We present a rigorous approximation result of stochastic partial differential equa-
tions (SPDEs) by amplitude equations near a change of stability. In order to keep
notations at a bearable level, we focus on approximating the stochastic Swift-
Hohenberg equation by the stochastic Ginzburg-Landau equation, although our
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results apply to a larger class of stochastic PDEs or systems of SPDEs. Similar
results are well-known in the deterministic case, see for instance [CE90, MSZ00].
However, there seems to be a lack of theory when noise is introduced into the sys-
tem. In particular, the treatment of extended systems (i.e.when the spatial variable
takes values in an unbounded domain) is still out of reach of current techniques.

In a series of recent articles [BMPS01, Blö03a, Bl̈o03b, BH04], the amplitude
of the dominating pattern was approximated by a stochastic ordinary differential
equation (SODE). On a formal level or without the presence of noise, the derivation
of these results is well-known, see for instance (4.31) or (5.11) in the comprehen-
sive review article [CH93] and references therein. This approach shows its limita-
tions on large domains, where the spectral gap between the dominating pattern and
the rest of the equation becomes small. It is in particular not appropriate to explain
modulated pattern occurring in many physical models and experiments (seee.g.
[Lyt96, LM99] or [CH93] for a review). The validity of the SODE-approximation
is limited to a small neighbourhood of the stability change, which shrinks, as the
size of the domain gets large.

For deterministic PDEs on unbounded domains it is well-known, seee.g.[CE90,
MS95, KSM92, Sch96], that the dynamics of the slow modulations of the pattern
can be described by a PDE which turns out to be of Ginzburg-Landau type.

Since the theory of translational invariant SPDEs on unbounded domains is
still far from being fully developed, we adopt in the present article a somewhat in-
termediate approach, considering large but bounded domains in order to avoid the
technical difficulties arising for SPDEs on unbounded domains. Note that the same
approach has been used in [MSZ00] to study the deterministic Swift-Hohenberg
equation. It does not seem possible to adapt the deterministic theory directly to the
stochastic equation. One major obstacle is that the whole theory for determinis-
tic PDE relies heavily on good a-priori bounds for the solutions of the amplitude
equation in spaces of sufficiently smooth functions. Such bounds are unrealistic
for our stochastic amplitude equation, since it turns out to be driven by space-time
white noise. Its solutions are therefore onlyα-Hölder continuous in space and time
for α < 1/2. Nevertheless, the choice of large but bounded domains captures and
describes all the essential features of how noise in the original equation enters the
amplitude equation.

1.1 Setting and results

In this article, we concentrate on deriving the stochastic Ginzburg-Landau equation
as an amplitude equation for the stochastic Swift-Hohenberg equation, though we
expect that similar results hold for a much wider class of equations, see remark
2.5. The Swift-Hohenberg equation is a celebrated toy model for the convective
instability in the Rayleigh-B́enard convection. A formal derivation of the equation
from the Boussinesq approximation of fluid dynamics can be found in [HS77].

In the following we consider solutions to

∂tU = −(1 + ∂2
x)2U + ε2νU − U3 + ε

3
2 ξε (SH)
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whereU (x, t) ∈ R satisfies periodic boundary conditions onDε = [−L/ε, L/ε].
The noiseξε is assumed to be real-valued homogeneous space-time noise. To be
more preciseξε is a distribution-valued centred Gaussian field such that

Eξε(x, s)ξε(y, t) = δ(t− s)qε(|x− y|) . (1.1)

The family of correlation functionsqε is assumed to converge in a suitable sense
to a correlation functionq. One should think for the moment ofqε as simply
being the2L/ε-periodic continuation of the restriction ofq toDε. We will state in
Assumption 7.4 the precise assumptions onq andqε. This will include space-time
white noise and noise with bounded correlation length.

Before we formulate our main results, let us briefly discuss why we expect
(SH) to have a scaling limit of the form

U (x, t) = 2εRe(a(εx, ε2t)eix) , (1.2)

for small values ofε and why the factorε
3
2 in front of the noise in equation (SH)

is the correct factor to balance with the linear termε2νU and the nonlinearityU3

so that all three contribute to the limiting equation, eqn. (1.4) below. Since the
nonlinearity dominates the linear instability atU � ε, we expect the solutions to
(SH) to be of orderε, hence the termε in front of the right-hand side of (1.2). It is
then natural to consider timescales of orderε−2, so that both the linear instability
and the nonlinearity contribute significantly to the dynamics. This explains the
argumentε2t. Concerning the relevant spacescale and the termeix, note that ifU
is “demodulated” by writing it asU (x, t) = Re(A(x, t)eix), then the differential
operator−(1+∂2

x)2 acting onU is close to a multiple of the Laplacian acting onA
(neglecting terms of order∂3

xA and∂4
xA). This suggests that one should look at the

solutions on a spacescale ofε−1 (since then∂2
xA ≈ ε2A is of the same order as the

linear instability and the nonlinearity), if one wants the linear differential operator
to give a non-trivial contribution in the scaling limit. It remains to explain the
factorε

3
2 in front of the noise. This is an immediate consequence of a dimensional

analysis of the stochastic heat equation

∂tA = ∂2
xA+ J ξ , (1.3)

(whereξ is space-time white noise andJ is the noise strength), which is expected
to describe the scaling limit of (SH) ifν = 0 and no nonlinearity is present. The
scaling behaviour ofξ, formally given byξ(αx, βt)

law= (αβ)−
1
2 ξ(x, t) immediately

implies that on a space interval of orderε−1 and a time interval of orderε−2,
solutions to (1.3) are of orderJε−

1
2 . Therefore, the noise should enter into (SH)

with a prefactor of orderJ ≈ ε
3
2 , so that the corresponding contribution on the

time and space scales under consideration is of orderε. Another way of seeing this
is to notice that the solutions to the stochastic heat equation are (almost)1

4 -Hölder
continuous in time and12 -Hölder continuous in space. This roughness in time is

a direct consequence of the singularity of ordert−
1
4 in theL2-norm of the Heat
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kernel (seee.g.[DPZ96, Thm 5.20]). Therefore, one would expect their size to be
of order (t

1
4 + x

1
2 )J . On the time and space scales under consideration, we see

again thatJ ≈ ε
3
2 results in a contribution of orderε. Note that if we were to study

the Swift–Hohenberg equation in a bounded domainD not scaling withε, then a
noise strength ofε2 would lead to the correct scaling, cf. [BMPS01].

The main result of this article is an approximation result for solutions to (SH)
by means of solutions to the stochastic Ginzburg-Landau equation. We consider a
class of “admissible” initial conditions given in Definition 3.4 below. This class is
slightly larger than that ofH1-valued random variables with bounded moments of
all orders and is natural for the problem at hand, due to the lack of uniformH1–
estimates for the stochastic convolution. We show in Theorem 5.1 that the solution
of (SH) with arbitrary initial conditions becomes admissible after a transient time.

Our main result (cf. Theorem 4.1) is the following:

Theorem 1.1 (Approximation) Let U be given by the solution of (SH) with an
admissible initial condition written asU0(x) = 2εRe(a0(εx)eix). Consider the
solutiona(X,T ) to the stochastic Ginzburg-Landau equation

∂Ta = 4∂2
Xa+ νa− 3|a|2a+

√
q̂(1) η , X ∈ [−L,L] , a(0) = a0 , (1.4)

whereη is complex space-time white noise andq̂ denotes the Fourier transform of
q. Here,a is subject to suitable boundary conditions, i.e. those boundary condi-
tions such thata(X,T )eiX/ε is 2L-periodic. Then, for everyT0 > 0, κ > 0, and
p ≥ 1, one can find joint realisations of the noisesη andξε such that(

E sup
ε2t∈[0,T0]

sup
x∈Dε

|U (x, t)− 2εRe(a(εx, ε2t)eix)|p
)1/p

≤ Cκ,p ε
3/2−κ (1.5)

for everyε ∈ (0, 1].

Note that solutions to (SH) tend to be of orderε, as can be seen from the fact
that this is the point where the dissipative nonlinearity starts to dominate the linear
instability. Therefore, the ratio between the size of the error and the size of the
solutions is of orderε1/2. Using an argument similar to the one in [BH04], it is
then straightforward to obtain an approximation result on the invariant measures
for (SH) and (1.4):

Theorem 1.2 (Invariant Measures) Let ν?,ε be the invariant measure for (1.4)
and letµ?,ε be an invariant measure for (SH). Then, one can construct random
variablesa? andU? with respective lawsν?,ε andµ?,ε such that for everyκ > 0
andp ≥ 1 (

E sup
x∈Dε

|U?(x)− 2εRe(a?(εx)eix)|p
)1/p

≤ Cκ,p ε
3/2−κ ,

for everyε ∈ (0, 1].
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Let us remark thatν?,ε is actually independent ofε, providedL ∈ επN.

Remark 1.3 The correctionε−κ appearing in Theorems 1.1 and 1.2 is a direct con-
sequence of the error estimates on the linearised equations obtained in Section 7.
One could in principle obtain logarithmic bounds using the Fernique-Talagrand
theorem from the theory of Gaussian processes. It is not expected, however, that a
boundO(ε3/2) without any corrections holds.

Most of the present article is devoted to the proof of Theorem 1.1. We will then
prove attractivity, Theorem 5.1 in Section 5 and Theorem 1.2 in Section 6, while
Section 7 provides a very general approximation result for linear equations, that is
used in the proof of Theorem 1.1.

The remainder of this paper is organised as follows. Section 2 is devoted to a
formal justification of our results. The main step in the proof of Theorem 1.1 is then
to define aresidual, which measures how well a given process approximates solu-
tions to (SH) via the variation of constants formula. Section 3 provides estimates
for this residual that are used in Section 4 to prove the main approximation result.
Section 5 justifies the assumptions on the initial conditions required for the proof
of the approximation result, and Section 6 applies the result to the approximation
of invariant measures. The final Section 7 provides the approximation result for
linear equations in a fairly general setting.

Acknowledgements

We are grateful to the anonymous referee for his constructive criticism of an earlier version
of this paper.

2 Formal Derivation of the Main Result

In order to simplify notations, we work from now on with the rescaled version
u(x, t) of the solutions of (SH), defined throughU (x, t) = εu(εx, ε2t). Then,u
satisfies the equation

∂tu = −ε−2(1 + ε2∂2
x)2u+ νu− u3 + ξ̃ε , (2.1)

with periodic boundary conditions on the domain [−L,L]. Here, we defined the
rescaled noisẽξε(x, t) = ε−3/2ξε(ε−1x, ε−2t). This is obviously a real-valued
Gaussian noise with covariance given by

Eξ̃ε(x, t)ξ̃ε(y, s) = δ(t− s)ε−1qε(ε
−1|x− y|) .

We define the operatorLε = −1 − ε−2(1 + ε2∂2
x)2 subject to periodic boundary

conditions on [−L,L] and we set̃ν = 1 + ν, so that (2.1) can be rewritten as

∂tu = Lεu+ ν̃u− u3 + ξ̃ε . (SHε)
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In order to handle the fact that the dominating modese±ix/ε are not necessarily
2L-periodic, we introduce the quantities

Nε =
[ L
επ

]
, δε =

1
ε
− π

L
Nε , %ε = Nε

πε

L
,

where [x ] ∈ Z is used to denote the nearest integer of a real numberx with the
conventions that [12 ] = 1

2 and [−x] = −[x].
With these notations, we rewrite the amplitude equation in a slightly different

way. SettingA(x, t) = a(x, t)eiδεx, (1.4) is equivalent to

∂tA = ∆εA+ ν̃A− 3|A|2A+
√
q̂(1)η , ∆ε = −1− 4(i∂x + δε)

2 , (GL)

with periodic boundary conditions, whereη is another version of complex space-
time white noise. This transformation is purely for convenience, since periodic
boundary conditions are more familiar.

Remark 2.1 Note that the limiting equation (GL) does still depend onε through
δε. This effect is a consequence of the fact that our domain is large but neverthe-
less bounded and was already noticed in [MSZ00]. It is obvious however that the
“drift” term 2iδε∂x in (GL) vanishes if we choose to letε → 0 along the sequence
L/(πε) ∈ N. Note furthermore that|δε| is bounded byπ

2L independently ofε. As
far as bounds are concerned, the reader is therefore encouraged to think of (GL) as
being independent ofε and to think ofδε as being0.

Before we proceed further, we fix a few notations that will be used throughout
this paper. We will consider solutions to (SHε) and (GL) in various function spaces,
but let us for the moment consider them in L2([−L,L]). We thus denote byHu the
L2-space of real-valued functions on [−L,L] which will contain the solutions to
(SHε) and byHa the L2-space of complex-valued functions on [−L,L] which will
contain the solutions to (GL). We define the norm inHu as half of the usual L2-
norm,i.e.

‖u‖2
u =

1
2

∫ L

−L
u2(x) dx , ‖A‖2

a =
∫ L

−L
|A(x)|2 dx , (2.2)

for all u ∈ Hu and allA ∈ Ha.

Remark 2.2 The choice of adding a factor12 in ‖ · ‖u may seem unusual and
confusing. However, this is the only way of making the operatorsπε andιε defined
in (2.3) and (2.4) below a projection and an isometric embedding respectively. The
reason for not changing (2.3) and (2.4) instead is one of legacy: this is indeed
the notation used throughout all the existing literature. If we were to remove the
factor2 in (2.3), the terma|a|2 in (1.4) would have a prefactor12 instead of3, thus
clashing with the existing literature on the subject.
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−ε−1 ε−1 −ε−1 ε−1 −ε−1 ε−1

πε ιε

Figure 1: Action ofπε andιε.

We introduce the projectionπε : Ha → Hu used in (1.5),i.e.

(πεA)(x) = 2Re(A(x)eiπNεx/L) . (2.3)

We also define the injectionιε : Hu → Ha by

(ιεu)(x) = u+ exp(−iπNεx/L) , (2.4)

where, foru =
∑

k∈Z uk exp(iπk/L), we definedu+ =
∑

k>0 uk exp(iπk/L) +
1
2u0. Sinceu is real-valued, one has of course the equalityu = u+ + u+, where
u+ denotes the complex conjugate ofu+. Furthermore, one has the relations

πε ◦ ιε = ι∗ε ◦ ιε = Id , (2.5)

and the embeddingιε is isometric. Here,ι∗ε : Hu → Ha denotes the adjoint ofιε.
We also define the spaceHι ⊂ Ha as the image ofιε. Equation (2.5) implies in
particular thatπε = ι∗ε, if both operators are restricted toHι. Note also thatιε is
not a bounded operator between the corresponding L∞ spaces, even thoughπε is.

Remark 2.3 Intuitively, the action ofπε in Fourier space is to first translate the
spectrum to the right byε−1 and then to add its reflection around thek = 0 axis.
The effect ofιε is to first cut off thek < 0 part and then translate the rest to the
left by ε−1. Figure 2 illustrates the successive actions ofπε andιε on an arbitrary
function in Fourier space.

With these notations in mind, we give a formal argument that shows why (GL)
is expected to yield a good approximation for (SHε). First of all, note that even
thoughιε◦πε is not the identity, it is close to the identity when applied to a function
which is such that its Fourier modes with wavenumber larger thanε−1 are small.
This is indeed expected to be the case for the solutionsA to (GL), since the heat
semigroupe∆εt strongly damps high frequencies.

Hence,ιεπεA ≈ A. Therefore, making the ansatzu = πεA and plugging it
into (SHε) yields

∂tA ≈ ιεLεπεA+ ν̃A− ιε(πεA)3 + ιεξ̃ε .
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O(ε−1)

O(ε−2)

Spectrum of̃ν − Lε

Figure 2: Spectra of the linear parts.

The left part of Figure 2 shows the spectrum ofν̃ + Lε. The right part shows
the spectrum ofιε(ν̃ + Lε)πε (which is interpreted as a self-adjoint operator from
Hι to Hι) in grey and the spectrum of∆ε + ν̃ in black. One sees that the two
are becoming increasingly similar asε → 0, since the tip of the curve becomes
increasingly well approximated by a parabola.

Expanding the term (πεA)3 we get

(πεA)3 = A3e3iπNεx/L + 3A|A|2eiπNεx/L + 3Ā|A|2e−iπNεx/L + Ā3e−3iπNεx/L .

Therefore, one has

ιε(πεA)3 ≈ A3e3iπNεx/L + 3A|A|2 .

Since the term with high wavenumbers will be suppressed by the linear part, we
can arguably approximate this by3A|A|2, so that we have

∂tA ≈ ∆εA+ ν̃A− 3|A|2A+ ιεξ̃ε . (2.6)

It remains to analyse the behaviour ofιεξ̃ε in the limit of small values ofε. Note
that we can expand̃ξε in Fourier series, so that

ξ̃ε(x, t)
law= cL

∑
k∈Z

√
q̂ε(εkπ/L)ξk(t)eikπx/L ,

where theξk(t) denote complex independent white noises, with the restriction that
ξ−k = ξk, and where we setcL = 1/

√
2L. On a formal level, this yields forιεξ̃ε

ιεξ̃ε(x, t)
law
≈

∞∑
k=0

cL
√
q̂(εkπ/L)ξk(t)eiπ(k−Nε)x/L

law= cL

∞∑
k=−Nε

√
q̂(πε(Nε + k)/L)ξk(t)eiπkx/L
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≈ cL
∑
k∈Z

√
q̂(1)ξk(t)eiπkx/L ≈

√
q̂(1) η(x, t) .

In this equation, we justify the passage from the second to the third line by the fact
that the linear part of (GL) damps high frequencies, so contributions from Fourier
modes beyondk ≈ ε−1 can be neglected. Furthermore,πε(Nε + k)/L → 1 for
ε→ 0.

Plugging the previous equation into (2.6), we obtain (GL). The aim of the
present article is to make this formal calculation rigorous.

Remark 2.4 The approach outlined above relies on the presence of a stable cubic
(or higher order) nonlinearity. For the moment, we cannot treat quadratic nonlin-
earities like the one arising in convection problems. See however [Blö03b] for a
result on bounded domains covering that situation or [Sch99] for a deterministic
result in unbounded domains.

Remark 2.5 Even though we restrict ourselves to the case of the stochastic Swift-
Hohenberg equation, it is clear from the above formal calculation that one expects
similar results to hold for a much wider class of equations. In fact, the linear result
is proved for a quite general class of operatorsP (i∂x) (cf. Section 7). Furthermore,
the main result of this paper, Theorem 1.1, is expected to hold for Stochastic PDE
of the type

∂tU = −P (i∂x)U + ε2νU −F(U ) + ε
3
2 ξε ,

with periodic boundary conditions onDε = [−Lε−1, Lε−1], for a large class of
stable cubic (or higher order) nonlinearitiesF(·).

Before we proceed with the proofs of the results stated in the introduction, let us
introduce a few more notations that will be useful for the rest of this article.

2.1 Notations, projections, and spaces

We already introduced the L2-spacesHa andHu, as well as the operatorsπε andιε.
We will denote byek(x) = eikπx/L/

√
2L the complex orthonormal Fourier basis

in Ha.

Definition 2.6 We define the scale of (fractional) Sobolev spacesHα
a ⊂ Ha with

α ∈ R as the closure of the set of2L-periodic complex-valued trigonometric poly-
nomialsA =

∑
Akek under the norm‖A‖2

a,α =
∑

k(1 + |k|)2α|Ak|2. We also
define the spaceHα

u as those real-valued functionsu such thatιεu ∈ Hα
a . We

endow these spaces with the natural norm‖u‖u,α = ‖ιεu‖a,α.

We also denote by Lpa (respectively Lpu) the complex (respectively real) space
Lp([−L,L]), endowed with the usual norm. We similarly define the spacesC0

a and
C0

u of periodic continuous bounded functions. We will from time to time consider
ek as elements ofHα

a , Lp
a, or the complexifications ofHα

u and Lpu.
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Note that with this notation, we have

ιεπεek =
{
ek if k ≥ −Nε,
e−k−2Nε if k < −Nε.

In particular, one has‖πεek‖u,α ≤ ‖ek‖a,α for everyα ≥ 0.

Remark 2.7 Although the norm inHα
u is equivalent to the standardα-Sobolev

norm, the equivalence constants depend onε. In particular, the operatorsιε :
Hα

u → Hα
a andπε : Hα

a → Hα
u are bounded by1 with our choice of norms, which

would not be the case ifHα
u was equipped with the standard norm instead.

Remark 2.8 Since the injectionιε : H1
u → H1

a, the inclusionH1
a ↪→ C0

a, as well
as the projectionπε : C0

a → C0
u are all bounded independently ofε, the inclusion

H1
u ↪→ C0

u, which is given by the composition of these three operators, is also
bounded independently ofε.

Finally, we define, for some sufficiently small constantδ > 0, the projectionsΠδ/ε

andΠc
δ/εby

Πδ/ε

(∑
k∈Z

γke
ikπx/L

)
=

∑
|k|≤δ/ε

γke
ikπx/L and Πc

δ/ε = 1−Πδ/ε . (2.7)

3 Bounds on the Residual

Our first step in the proof of Theorem 1.1 is to control the residual (defined in
Definition 3.3 below), which measures how well a given approximation satisfies
the mild formulation of (SHε). Before we give the definition of a mild solution,
we define the stochastic convolutionsWLε(t) andW∆ε(t), which are formally the
solutions to the linear equations:

WLε(t) =
√
Qε

∫ t

0
e(t−τ )Lε dWξ(t) (3.1a)

W∆ε(t) =
√
q̂(1)

∫ t

0
e(t−τ )∆ε dWη(t) . (3.1b)

HereWξ(t) andWη(t) denote standard cylindrical Wiener processes (i.e. space-
time white noises). Note thatWξ is real valued, whileWη is complex valued.

The covariance operatorQε is given by the convolution withqε as mentioned
in (1.1). We will assume throughout this section the following.

Assumption 3.1 The kernelqε can be chosen in a way such that there exists a
constantC and a joint realisation ofWLε andW∆ε such that

E
(

sup
t∈[0,T ]

‖WLε(t)− πεW∆ε(t)‖p
C0

u

)
≤ Cε

p
2
−κ ,

for everyε ∈ (0, 1).
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Remark 3.2 We will prove in Section 7 below that it is always possible to satisfy
Assumption 3.1 providedq satisfies some weak regularity and decay conditions.

With these notations, a mild solution, seee.g.[DPZ92, p. 182 ], of the rescaled
equation (SHε) is a processu with continuous paths such that:

u(t) = etLεu(0) +
∫ t

0
e(t−τ )Lε(ν̃u(τ )− u3(τ ))dτ +WLε(t) , (3.2)

almost surely. We also consider mild solutionsA of (GL)

A(t) = et∆εA(0) +
∫ t

0
e(t−τ )∆ε(ν̃A(τ )− 3|A(τ )|2A(τ )) dτ +W∆ε(t) . (3.3)

This motivates the following definition:

Definition 3.3 Let ψ be anHu-valued process. TheresidualRes(ψ) of ψ is the
process given by

Res(ψ)(t) = −ψ(t)+etLεψ(0)+
∫ t

0
e(t−τ )Lε(ν̃ψ(τ )−ψ3(τ ))dτ+WLε(t) , (3.4)

whereWLε(t) is as in (3.1a).

It measures how well the processψ approximates a mild solution of (SHε). Let
us now introduce the concept of admissible initial condition. Since we are dealing
with a family of equations parametrised byε ∈ (0, 1), we actually consider a family
of initial conditions. We emphasise on theε-dependence here, but we will always
consider it as implicit in the sequel.

Definition 3.4 A family of random variablesAε with values inHa (or equivalently
a family µε of probability measures onHa) is calledadmissibleif there exists a
decompositionAε = W ε

0 + Aε
1, a constantC0, and a family of constants{Cq}q≥1

such that

1. Aε
1 ∈ H1

a almost surely andE‖Aε
1‖

q
a,1 ≤ Cq for everyq ≥ 1,

2. theW ε
0 are centred Gaussian random variables such that

|E〈ek,W ε
0 〉〈e`,W ε

0 〉| ≤ C0
δk`

1 + |k|2
, (3.5)

for all k, ` ∈ Z, (δk` = 1 for k = ` and0 otherwise)

and such that these bounds are independent ofε. A family of random variablesuε

with values inHu is called admissible ifιεuε is admissible.

Remark 3.5 The definition above is consistent with the definition ofπε in the
sense that ifAε is admissible, thenπεA

ε is also admissible.
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Remark 3.6 Note that (3.5) implies that the covariance operator ofW ε
0 commutes

with the Laplacian, so thatW ε
0

law=
∑

k∈Z c
ε
kξkek, wherecεk ≤ C/(1 + |k|) and the

ξk are independent normal random variables with the restriction thatξ−k = ξk.
This implies by Lemma A.1 thatE‖W ε

0 ‖
p
C0

a
≤ C for everyp ≥ 1, as‖ek‖L∞ ≤ C

and Lip(ek) ≤ C|k|.

We have the following result.

Theorem 3.7 (Residual)Let Assumption 3.1 be satisfied. Then, for everyp ≥ 1,
T0 > 0, κ > 0, and admissible initial conditionA(0), there is a constantCκ,p > 0
such that the mild solutionA of (GL) with initial conditionA(0) satisfies

E
(

sup
t∈[0,T0]

‖Res(πεA)(t)‖p
C0

u

)
≤ Cκ,p ε

p
2
−κ. (3.6)

For the proof of the theorem we need two technical lemmas. The first one provides
us with estimates on the operator norm for the difference between the semigroup
of the original equation and that of the amplitude equation.

Lemma 3.8 LetHt be defined as

Ht := e−Lεtπε − πεe
−∆εt . (3.7)

Then for allα > 0 there exists a constantC > 0 such that

‖Ht‖L(Ha,Hα
u ) ≤ Cεt−

α+1
2 and ‖Ht‖L(H1

a,C0
u) ≤ Cε1/2 . (3.8)

Proof. The operatorHt acts onek ∈ Ha as

Htek = λk(t)πεek , (3.9)

where theλk(t)’s are given by

λk(t) = ce
−t

(
1+ε−2

(
1− ε2π2

L2 (k−Nε)2
)2

)
− ce

−t
(
1+4( kπ

L
−δε)2

)
, (3.10)

with some constantc bounded by1. By Taylor expansion aroundk = 0, we easily
derive for some constantsc andC the bound

|λk(t)| ≤
{

C for all k ∈ Z,
Ctε(1 + |k|)3e−ct(1+|k|)2 for |k| ≤ Nε,

(3.11)

Let nowh =
∑

k∈Z hkek ∈ Ha. We write

‖Hth‖u,α ≤ ‖HtΠδ/εh‖u,α + ‖HtΠc
δ/εh‖u,α

for δ > 0 sufficiently small so thatδ/ε ≤ Nε. It follows furthermore from standard
analytic semigroup theory thatHt is bounded byCt−(α+1)/2 as an operator from
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H−1
a intoHα

u . Since the operatorΠc
δ/ε : Ha → H−1

a is bounded byCε, it follows

that one has indeed‖HtΠc
δ/εh‖u,α ≤ Cεt−(α+1)/2‖h‖a. The term‖HtΠδ/εh‖u,α

is in turn bounded by

‖HtΠδ/εh‖2
u,α ≤ Ct2ε2

∑
|k|≤δ/ε

(1 + |k|)6+2αe−ct(1+|k|)2 |hk|2

≤ Ct−α−1ε2
∑

|k|≤δ/ε

(t(1 + |k|)2)3+αe−ct(1+|k|)2 |hk|2

≤ Ct−α−1ε2‖h‖2
a ,

from which the first bound follows. To show the second bound, takeh =
∑

k hkek
in H1

a. Now a crude estimate shows

‖Hth‖C0
u
≤ C

∑
k∈Z

|λk(t)| |hk| ≤ C

√∑
k∈Z

|λk(t)|2
1 + |k|2

‖h‖a,1 . (3.12)

It follows from (3.11) that

|λk(t)|2/(1 + |k|2) ≤ C min{ε2, 1/(1 + |k|2)} , (3.13)

so that
∑

k∈Z
|λk(t)|2
1+|k|2 ≤ Cε by treating separately the case|k| ≤ ε−1 and the case

|k| > ε−1.

The second technical lemma bounds the difference between the linear part of the
original equation and that of the amplitude equation, applied to an admissible initial
condition. The idea is that, for an initial condition which admits the decomposition
A = W0 +A1, one can use theH1

a-regularity to control the term involvingA1 and
Gaussianity to control the term involvingW0.

Lemma 3.9 LetA be admissible in the sense of Definition 3.4 and letHt be defined
by (3.7). Then for everyT0 > 0 κ > 0 andp ≥ 1 there exist constantsC > 0 such
that

E
(

sup
t∈[0,T0]

‖HtA‖p
C0

u

)
≤ Cε

p
2
−κ. (3.14)

Proof. SinceA is admissible, it can be written asA = W0 + A1 with the same
notations as in Definition 3.4. The bound onHtA1 is an immediate consequence
of Lemma 3.8 above, so we only consider the term involvingW0. We writeW0 =∑

k∈Z c
ε
kξkek as in Remark 3.6, so that by (3.9)

HtW0 =
∑
k∈Z

cεkλk(t)ξk πεek ,

with λk as in (3.10). We use now Lemma A.1 with domainG = [−L,L] × [0, T0]
and

fk(x, t) = cεkλk(t) (πεek)(x) .
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From (3.13), we derive‖fk‖L∞ ≤ C min{ε, 1/(1 + |k|)}. Furthermore, it is easy
to see by a crude estimate on Lip(λk) that Lip(fk) ≤ Cε−4(1 + |k|)4 for some
constantC, so that the required bound follows. Note that any bound on Lip(fk)
which is polynomial inε−1 and|k| is sufficient.

Proof of Theorem 3.7.We start be reformulating the residual in a more convenient
way. We add and subtract

∫ t
0 e

(t−τ )Lε(πε3A|A|2)(τ ) dτ to obtain

Res(πεA)(t) = −(πεA)(t) + etLε(πεA)(0) +WLε(t)

+ ν̃

∫ t

0
e(t−τ )Lε

(
ν̃(πεA)(τ )− ((πεA)(τ ))3

)
dτ

= HtA(0) +
∫ t

0
Ht−τ

(
ν̃εA(τ )− (A(τ ))3

)
dτ

+
∫ t

0
e(t−s)Lε

(
(πε3|A|2A)(τ )− ((πεA)(τ ))3

)
dτ

+WLε(t)− πεW∆ε(t) ,

where the operatorHt is defined in (3.7). We estimate each term in the above
expression separately, starting with the one involving the initial conditions. Since
we have assumed thatA(0) is admissible, Lemma 3.9 applies and we obtain

E sup
t∈[0,T ]

‖HtA(0)‖p
C0

u
≤ Cpε

p
2
−κ.

Furthermore, Assumption 3.1 ensures thatWLε(t) − πεW∆ε(t) satisfies the re-
quested bound.

We now use Lemma 3.8 for someα ∈ (1
2 , 1) together with the embedding of

Hα
a in C0

a to deduce that:∥∥∥∫ t

0
Ht−τ

(
ν̃εA(τ )− (A(τ ))3

)
dτ
∥∥∥
C0

u

≤ C

∫ t

0
‖Ht−τ‖L(L2

a,Hα
a ) dτ sup

0≤τ≤t
‖A(τ )‖3

L6a

≤ Cε

∫ t

0
(t− τ )−

α+1
2 dτ sup

0≤τ≤t
‖A(τ )‖3

L6a

≤ Cε sup
0≤τ≤t

‖A(τ )‖3
L6a
.

Thus with the a–priori estimate on the solution of the amplitude equation from
Proposition A.5

E sup
t∈[0,T ]

∥∥∥∫ t

0
Ht−τ

(
(ν + 1)εA(τ )− (A(τ ))3

)
dτ
∥∥∥p

C0
u

≤ Cpε
p .

Let us turn to the remaining term. We have (writingẽ2Nε = e2iπNεx/L)∫ t

0
e(t−τ )Lε(3πε(|A|2A)(τ )− (πεA(τ ))3)dτ =

∫ t

0
e(t−τ )Lεπε

(
A(τ )3ẽ2Nε

)
dτ
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=
∫ t

0
πεe

(t−τ )∆ε
(
A(τ )3ẽ2Nε

)
dτ

+
∫ t

0
Ht−τ

(
A(τ )3ẽ2Nε

)
dτ.

=: I1(t) + I2(t).

Let us consider firstI2(t). We use Lemma 3.8, together with thea priori estimate
onA from Proposition A.5 to obtain:

E sup
t∈[0,T ]

‖I2(t)‖p
C0

u
≤ Cpε

p.

Now we turn toI1(t). By Theorem A.7, since we have assumed that the initial
conditions are admissible, we know thatA(t) is concentrated in Fourier space:

E sup
t∈[0,T0]

‖Πc
δ/εA(t)‖p

C0
a
≤ Cε

p
2
−κ.

Consequently we haveA3 = (Πδ/εA)3 + Z, where

E sup
t∈[0,T0]

‖Z‖p
C0

a
≤ Cε

p
2
−κ and E sup

t∈[0,T0]
‖Πδ/εA(t)‖p

C0
a
≤ C. (3.15)

Furthermore, we know that (Πδ/εA)3e2Nε has non-vanishing Fourier coefficients
only for wavenumbers between2Nε−3δ/ε and2Nε−3δ/ε. By choosingδ < 2/3,
sayδ = 1/3, we thus guarantee the existence of constantsC andc independent of
ε such that

‖et∆ε(Πδ/εA)3e2Nε‖C0
a
≤ Cε−1e−cε−2t‖(Πδ/εA)3‖C0

a
.

Hence, ∥∥∥∫ t

0
πεe

(t−τ )∆ε

((
Πδ/εA(τ )

)3
e

2iπNεx
L

)
dτ
∥∥∥
C0

u

≤ C

∫ t

0
e−cε−2(t−τ )ε−1‖Πδ/εA(τ )‖3

C0
a
dτ

≤ Cε sup
t∈[0,T0]

‖Πδ/εA(t)‖p
C0

a
. (3.16)

Since furthermore‖πεe
t∆ε‖L(C0

a,C0
u) ≤ C independently ofε, we obtain:∥∥∥∫ t

0
πεe

(t−τ )∆ε

(
(Πc

δ/εA(τ ))3e
2iπNεx

L

)
dτ
∥∥∥
C0

u

≤ C sup
t∈[0,T0]

‖Πc
δ/εA(t)‖p

C0
a
.

(3.17)
Combining (3.16), (3.17), and (3.15), we obtain

E sup
t∈[0,T ]

‖I1(t)‖p
C0

u
≤ Cpε

p
2 .

Putting all the above estimates together we obtain (3.6) of Theorem 3.7.
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4 Main Approximation Result

This section is devoted to the proof of the following approximation theorem.

Theorem 4.1 (Approximation) Fix T0 > 0, p ≥ 1, andκ > 0. There exist joint
realisations of the Wiener processesWξ andWη from (3.1) such that, for every
admissible initial conditionA(0), there existsC > 0 such that

E
(

sup
t∈[0,T0]

‖u(t)− πεA(t)‖p
C0

u

)
≤ Cε

p
2
−κ . (4.1)

whereA is the solution of (3.3) with initial conditionA(0) andu is the solution of
(3.2) with initial conditionu(0) = πεA(0).

Before we turn to the proof of this result, we make a few preliminary calcula-
tions. LetA(t) andu(t) be as in the statement of Theorem 4.1 and define

R(t) = u(t)− πεA(t) .

From (3.2) and Definition 3.3 we easily derive

R(t) =
∫ t

0
e(t−τ )Lε [ν̃R(τ )− 3R(τ )(πεA(τ ))2 − 3R(τ )2πεA(τ )−R(τ )3]dτ

+ Res(πεA)(t).

Define
ϕ(t) = Res(ψ)(t), ψ(t) = πεA(t)

and
r(t) = R(t)− ϕ(t). (4.2)

Thenr(t) satisfies the equation

∂tr = Lεr+ ν̃(r+ϕ)− 3(r+ϕ)ψ2− 3(r+ϕ)2ψ− (r+ϕ)3, r(0) = 0. (4.3)

With these notations, we have the followinga priori estimates inL2.

Lemma 4.2 Under the assumptions of Theorem 4.1 there exists a constantC > 0
such that

E
(

sup
t∈[0,T0]

‖r(t)‖p
u

)
≤ Cε

p
2
−κ , (4.4)

for r(t) defined in (4.2).

Proof. As before, we are using‖ · ‖u to denote the norm inHu and we denote by
〈·, ·〉u the corresponding scalar product. Taking the scalar product of (4.3) withr
we obtain

d

dt
‖r‖2

u = 2〈Lεr, r〉u + 2ν̃〈r + ϕ, r〉u − 6〈(r + ϕ)ψ2, r〉u
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− 6〈(r + ϕ)2ψ, r〉u − 2〈(r + ϕ)3, r〉u
=: I1 + I2 + I3 + I4 + I5 .

SinceLε + 1 is by definition a non-positive selfadjoint operator, we haveI1 ≤
−2‖r‖2

u. Moreover, the Cauchy-Schwarz inequality yields:

I2 ≤ C‖r‖2
u + C‖ϕ‖2

u .

It follows from the Young and Cauchy-Schwarz inequalities that

I3 ≤ −3
∫ L

−L
r2ψ2 dx+ C‖r‖2

u + C‖ϕ‖2
C0

u
‖ψ‖4

C0
u

,

and

I4 = −3
∫ L

−L
r3ψ dx− 3

∫ L

−L
r2ϕψ dx− 3

∫ L

−L
rϕ2ψ dx

≤ 1
8
‖r‖4

L4
u

+ C‖ψ‖4
C0

u
+ C‖ϕ‖2

C0
u
‖ψ‖2

u .

Finally, expandingI5 yields

I5 ≤ −7
8
‖r‖4

L4
u

+ C‖ϕ‖4
C0

u
.

Putting all these bounds together, we obtain:

∂t‖r‖2
u ≤ C‖r‖2

u + C
(
1 + ‖ψ‖4

C0
u

)
‖ϕ‖2

C0
u

(
1 + ‖ϕ‖2

C0
u

)
.

We apply now a comparison argument to deduce (r(0) = 0 by definition)

‖r(t)‖2
u ≤ C

∫ t

0
eC(t−τ )

(
1 + ‖ψ‖4

C0
u

)
‖ϕ‖2

C0
u

(
1 + ‖ϕ‖2

C0
u

)
(τ )dτ. (4.5)

From Theorem 3.7 we derive withϕ(t) = Res(πεA)(t)

E sup
t∈[0,T0]

‖ϕ(t)‖p
C0

u
≤ Cpε

p
2
−κ . (4.6)

Furthermore, thea priori estimate onA(t), Proposition A.5, together with the prop-
erties ofπε yield forψ(t) = πεA(t)

E sup
t∈[0,T0]

‖ψ(t)‖p
C0

u
≤ Cp . (4.7)

Combining (4.5) with (4.6) and (4.7) we obtain (4.4) of Lemma 4.2.

To proceed further we first establish two interpolation inequalities. We start by
defining the selfadjoint operator

A = ι∗ε(1− ∂2
x)ιε . (4.8)

By Definition 2.6, theHα
u -norm is given by‖r‖u,α = 〈r,Aαr〉. Furthermore, the

following interpolation lemma holds.
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Lemma 4.3 For p ≥ 2 there is a constantC > 0 such that

‖u‖Lp
u
≤ C‖u‖

1
2
− 1

p

u,1 ‖u‖
1
2
+ 1

p
u and ‖u‖Lp

u
≤ C‖u‖

1
4
− 1

2p

u,2 ‖u‖
3
4
+ 1

2p
u

for everyu ∈ H2
u.

Proof. The proof of the lemma follows from the standard interpolation inequalities,
the definition ofA and the properties of the operatorsιε, πε (cf. (2.3) and (2.4)).

It is also straightforward to verify thatLε andA have a joint basis of eigenfunctions
consisting of sin(πkx/L) and cos(πkx/L). By comparing the eigenvalues it is easy
to verify that

〈−Lεu, u〉u ≥ 〈Au, u〉u and thus ‖u‖u,1 ≤ ‖(−Lε)
1
2u‖u . (4.9)

Furthermore
〈−Lεu,Au〉u ≥ ‖Au‖2

u = ‖u‖2
u,2 . (4.10)

We now turn to the

Proof of Theorem 4.1.We take the scalar product of (4.3) withAr to obtain

1
2
∂t‖r‖2

u,1 = 〈Lεr,Ar〉u + ν̃〈r + ϕ,Ar〉u − 3〈(r + ϕ)ψ2,Ar〉u

− 3〈(r + ϕ)2ψ,Ar〉u − 〈(r + ϕ)3,Ar〉u
=: I1 + I2 + I3 + I4 + I5 .

We then use (4.10) to getI1 ≤ −‖r‖2
u,2. Moreover, using Cauchy-Schwarz and

Young, one has the bounds

I2 ≤ C‖r‖2
u + C‖ϕ‖2

u +
1
8
‖r‖2

u,2

and

I3 ≤ C‖r‖2
u‖ψ‖4

C0
u

+ C‖ϕ‖2
u‖ψ‖4

C0
u

+
1
8
‖r‖2

u,2 .

In order to bound the termI4 we use Lemma 4.3 withp = 4:

I4 =
1
8
‖r‖2

u,2 + C‖ψ‖
8
3

C0
u
‖r‖

14
3

u + C‖ψ‖2
C0

u
‖ϕ‖4

C0
u
.

Finally, we use Lemma 4.3 withp = 6 to boundI5:

I5 ≤ δ‖r‖2
u,2 + Cδ‖ϕ‖6

C0
u

+ Cδ‖r‖10
u .

Putting everything together we obtain:

∂t‖r‖2
u,1 ≤ C‖r‖2

u

(
‖ψ‖4

C0
u

+ ‖ψ‖3
C0

u
‖r‖2

u + ‖ψ‖2
C0

u
‖r‖4

u + ‖r‖8
u

)
+ C‖ϕ‖2

C0
u

(
1 + ‖ϕ‖2

C0
u
‖ψ‖2

C0
u

+ ‖ψ‖4
C0

u
+ ‖ϕ‖4

C0
u

)
.

(4.11)

Estimate (4.1) follows now from (4.11), together with Lemma 4.2 and thea priori
bounds onϕ andψ from (4.7) and (4.6).
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5 Attractivity

This section provides attractivity results for the SPDE. We consider the rescaled
equation (SHε), and we prove that regardless of the initial conditionu(0) we start
with, we will end up for sufficiently larget > 0 with an admissibleu(t), thus
giving admissible initial conditions for the amplitude equation. The main result of
this section is contained in the following theorem.

Theorem 5.1 (Attractivity) For all (random) initial conditionsu(0) such that
u(0) ∈ Hu almost surely and everyt > 0, the mild solutionu(t) of (SHε) is ad-
missible in the sense of Definition 3.4. Furthermore, given aT0 > 0 the family of
constants{Cq}q>0 which appears in the definition of admissibility is independent
of the initial conditions and the timet for t > T0.

Remark 5.2 In [Cer99] and [GM01] uniform bounds on the solutions after tran-
sient times were obtained that are independent of the initial condition. However,
the statements given in these papers do not cover the situation presented here.

The rest of this section is devoted to the proof of this theorem. First we will
prove standard a-priori estimates inL2-spaces that rely on the strong nonlinear
stability of the equation. Then we will provide regularisation results using theH1

u

norm which allow us to get to theC0
u space and we end with the admissibility of

the solution. Note that the solutionu will never be inH1, therefore we have to
consider suitable transformations.

Let u(t) denote the mild solution of (SHε), i.e. a solution of (3.2). Denote as
in (3.1a) byWLε the stochastic convolution for the operatorLε and definev :=
u−WLε . Thenv satisfies the equation

∂tv = Lεv + ν̃(v +WLε)− (v +WLε)3, (5.1)

with the same initial conditions asu. We start by obtaining anL2 estimate on
u. Before we do this let us discuss some estimates for the stochastic convolution.
Using first Proposition 7.1 we obtain

E sup
t∈[0,T0]

‖WLε(t)‖2p
C0

u
≤ CE sup

t∈[0,T0]
‖W∆ε(t)‖2p

C0
a

+ Cεp/2−κ .

Hence, using the modification of Lemma A.3 or Proposition A.5 withc = 0,

E sup
t∈[0,T0]

‖WLε(t)‖2p
C0

u
≤ C . (5.2)

Lemma 5.3 Let u(t) be the solution of (3.2). Fix arbitraryT0 > 0. Then there
exists a constantC > 0 independent ofu(0) such that

sup
t≥T0

E‖u(t)‖p
u ≤ C.
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Assume further thatE‖u(0)‖p
u ≤ c0. Then, givenT0 > 0 there exists a constantC

such that
sup
t≥0

E‖u(t)‖p
u ≤ C, and E sup

t∈[0,T0]
‖u(t)‖p

u ≤ C.

Proof. We multiply (5.1) withv, integrate over [−L,L], use the dissipativity ofLε

in Hu, together with the fact that

−〈v, (v +WLε)3〉u ≤ −(1− δ)‖v‖4
u + δ‖v‖2

u + Cδ‖WLε‖4
u

for everyδ > 0, which we choose to be sufficiently small, to obtain

∂t‖v‖2
u ≤ −C1‖v‖4

u + C2

(
1 + ‖WLε‖4

C0
u

)
,

for some positive constantsC1 andC2. A comparison theorem for ODE yields for
t ∈ [0, T0]

‖v(t)‖2
u ≤ max

{
C(1 + sup

t∈[0,T0]
‖WLε‖2

C0
u
);

1
C1t/2 + 1/‖v(0)‖2

u

}
≤ C

(
1 + sup

t∈[0,T2]
‖WLε‖2

C0
u

+
1
t

)
. (5.3)

Note furthermore, that

∂t‖v‖2
u ≤ −c‖v‖2

u + C
(
1 + ‖WLε‖4

C0
u

)
.

Again a comparison argument for ODEs yields for anyT0 > 0

‖v(t)‖2
u ≤ ec(t−T0)‖v(T0)‖2

u + C

∫ t

T0

e−c(t−s)
(
1 + ‖WLε(s)‖4

C0
u

)
ds (5.4)

The claims of the lemma follow now easily from (5.3) and (5.4), the fact that
u = v +WLε , and the estimates on the stochastic convolution from (5.2).

Lemma 5.4 Fix δ > 0, p > 0, andT0 > 0. Then there is a constantC such that
for all mild the solutionsu of (SHε) (i.e. (3.2)) withE‖u(0)‖5p

u ≤ δ the following
estimate holds

sup
t≥T0

E‖u(t)‖p
C0

u
≤ C . (5.5)

Proof. Define

w(t) := u(t)− etLεu(0)−WLε =: u(t)− ϕ(t)

Noww fulfils

∂tw = Lεw + ν̃(w + ϕ)− (w + ϕ)3, w(0) = 0 (5.6)
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ConsiderA defined in (4.8) and multiply (5.6) withAw, integrate over [−L,L],
use Lemma 4.3 withp = 6 as well as‖v‖u,1 ≤ ‖v‖u,2 to obtain:

∂t‖w‖2
u,1 ≤ −C1‖w‖2

u,1 + C2

(
‖w‖2

u + ‖w‖10
u + ‖ϕ‖2

u + ‖ϕ‖6
L6

u

)
A comparison theorem for ODE now yields:

‖w(t)‖2
u,1 ≤ C2

∫ t

0
e−C1(t−τ )(1 + ‖w‖10

u + ‖ϕ‖6
L6

u
)(τ ) dτ . (5.7)

Using (4.9) and Lemma 4.3 we deduce that‖u‖L6
u
≤ C‖(−Lε)1/2u‖1/3

u ‖u‖2/3
u .

Hence,
‖etLεu0‖3

L6
u
≤ Ct−1/2‖u0‖3

u . (5.8)

Taking theLp/2-norm in probability space, we deduce from (5.7) using (5.8) and
the embedding ofH1

u into C0
u from Remark 2.8

(
E‖w(t)‖p

C0
u

)2/p
≤ C

(
1 + sup

t≥0
(E‖w(t)‖5p

C0
u
)2/p + sup

t≥0
(E‖WLε‖

3p
L6

u
)2/p

)

+ C

∫ t

0
τ−1/2e−C1τdτ (E‖u(0)‖3p

u )2/p ≤ C (5.9)

for all t > 0, where we used theL2-bounds from Lemma 5.3. Note that this is the
reason, why we need the5p-th moment of the initial conditionu(0). On the other
hand, the bound on the stochastic convolution together with standard properties of
analytic semigroups enable us to boundϕ(t), for t sufficiently large:

‖ϕ(t)‖C0
u
≤ C‖etLεu(0)‖u,1 + ‖WLε‖C0

u
≤ Ct−1/2‖u(0)‖u + ‖WLε‖C0

u
.

Estimate (5.5) now follows from the above estimate, Lemma 5.3, the definition of
w and estimate (5.9).

Proof of Theorem 5.1.First, Lemma 5.3 together with Lemma 5.4 establishes the
existence of a timeT0 > 0 such thatE‖u(t)‖p

C0
u
≤ C for all t ≥ T0. Furthermore,

combining (5.7) and (5.9) we immediately get that

E‖w(t)‖p
u,1 ≤ C.

Thus, under the assumptions of the previous lemma and using the properties of
the stochastic convolutionWLε(t) we conclude that for everyt > 0 u(t) can be
decomposed as

u(t) = w(t) + Z(t) + etLεu(0) ,

wherew(t) ∈ H1
u andZ(t) is a centred Gaussian process inC0

u. Moreover,etLεu(0)
is inH1

u for anyt > 0, too. We use now the decomposition

u(T0 + τ ) = w̃(τ ) + Z̃(τ ) + eτLεu(T0) ,
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where we consideru(t) as the solution starting at sufficiently largeT0 > 0 with ini-
tial conditionsu(T0). Forτ > 0 sufficiently large the processιεZ̃(τ ) := ιεWLε(τ )
(in law) is clearly as in2. of Definition 3.4. For 1. defineW0(τ ) := w̃(τ ) +
eτLεu(T0). We obtain from Lemma 5.4 and the analog of (5.9) forw̃ that

E‖W0(τ )‖p
u,1 ≤ Cp + Cτ−p/2E‖u(T0)‖p

u ≤ C .

Hence, the decompositionu(t) = W0(t− T0) + Z̃(t− T0) shows the admissibility
of u(t), where the constants are independent oft ≥ 2T0.

6 Approximation of the Invariant Measure

First, we denote byPε
t the semigroup (acting on finite Borel measures) associated

to (SHε) and byQε
t the semigroup associated to (GL). Note thatQε

t depends onε,
but it is for instance independent ofε for L ∈ επN.

Recall also that the Wasserstein distance‖·‖W between two measures on some
metric spaceM with metricd is given by

‖µ1 − µ2‖W = inf
µ∈C(µ1,µ2)

∫
M2

min{1, d(f, g)}µ(df, dg) .

whereC(µ1, µ2) denotes the set of all measures onM2 with j-th marginalµj . See
for example [Rac91] for detailed properties of this distance.

In the sequel, we will use the notation‖µ1−µ2‖W,p for the Wasserstein distance
corresponding to the Lp-normd(f, g) = ‖f − g‖Lp for p ∈ [1,∞]. The main result
on the invariant measures is

Theorem 6.1 Let µ?,ε be an invariant measure for (SHε) and letν?,ε be the (uni-
que) invariant measure for (GL). Then, for everyκ > 0, there existsC > 0 such
that one has

‖µ?,ε − π∗εν?,ε‖W,∞ ≤ Cε1/2−κ

for everyε ∈ (0, 1].

Note thatν?,ε is actually independent ofε providedL ∈ επN. As usual, the
measureπ∗εν denotes the distribution ofπε under the measureν.

Proof. Fix κ > 0 for the whole proof. From the triangle inequality and the defini-
tion of an invariant measure, we obtain

‖µ?,ε − π∗εν?,ε‖W,∞ ≤ ‖Pε
t µ?,ε − π∗εQε

t ι
∗
εµ?,ε‖W,∞

+ ‖π∗εQε
tν?,ε − π∗εQε

t ι
∗
εµ?,ε‖W,∞ .

(6.1)

Concerning the first term, it follows from Theorem 4.1 that the family of mea-
suresµ?,ε is admissible and that

‖Pε
t µ?,ε − π∗εQε

t ι
∗
εµ?,ε‖W,∞ ≤ Cε1/2−κ .
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In order to bound the second term in (6.1), we use the exponential convergence
ofQε

tµ towards a unique invariant measure. This is a well-known result for SPDEs
driven by space-time white noise (cf.e.g.Theorem 2.4 of [GM01]), but we need
the explicit dependence of the constants on the initial measures. The precise bound
required for our proof is given in Lemma 6.2 below.

By Lemma 6.2, there existst > 0 such that

‖Qε
tµ?,0 −Qε

t ι
∗
εµ?,ε‖W,∞ ≤ 1

2
√
L
‖ι∗εµ?,ε − ν?,ε‖W,2 ,

so that the boundedness in L∞ of πε implies

‖µ?,ε − π∗εν?,ε‖W,∞ ≤ 1
2
√
L
‖ι∗εµ?,ε − ν?,ε‖W,2 + Cε1/2−κ .

Since the L2-norm is bounded by
√
L times the L∞-norm, this in turn is smaller

than

1
2
‖µ?,ε − π∗εν?,ε‖W,∞ +

1
2
√
L
‖ι∗επ∗εν?,ε − ν?,ε‖W,2 + Cε1/2−κ .

It follows from standard energy-type estimates that

E
∫
Hα

a

‖A‖α ν?,ε(dA) < Cα

for everyα < 1/2, where the constantsCα can be chosen independently ofε. This
estimate is a straightforward extension of the results presented in Section A.2.

One therefore has‖ι∗επ∗εν?,ε − ν?,ε‖W,2 ≤ Cκε
1/2−κ. Plugging these bounds

back into (6.1) shows that

‖µ?,ε − π∗εν?,ε‖W,∞ ≤ 1
2
‖µ?,ε − π∗εν?,ε‖W,∞ + Cκε

1/2−κ ,

and therefore concludes the proof of Theorem 6.1.

Besides the approximation result, the main ingredient for the above reasoning is:

Lemma 6.2 For everyδ > 0, there exists a timeT = T (δ) independent ofε such
that

‖Qε
Tµ−Qε

T ν‖W,∞ ≤ δ‖µ− ν‖W,2 .

Proof. It follows from the Bismut-Elworthy-Li formula combined with standarda
priori bounds onQε

t [EL94, DPZ96, Cer99] that

‖Qε
tµ−Qε

tν‖TV ≤ C(1 + t−1/2)‖µ− ν‖W,2 ,

with a constantC independent ofε.
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On the other hand, [GM01] there exist constantsC andγ such that

‖Qε
tµ−Qε

tν‖TV ≤ Ce−γt‖µ− ν‖TV . (6.2)

These constants may in principle depend onε. By retracing the constructive argu-
ment of Theorem 5.5 in [Hai02] with the binding function

G(x, y) = −C(y − x)(1 + ‖y − x‖−1/2
u ) ,

one can however easily show that the constants in (6.2) can be chosen indepen-
dently ofε.

7 Approximation of the Stochastic Convolution

In this section, we give L∞ bounds in time and in space on the difference between
the stochastic convolutions of the original equation and of the amplitude equation.
The main result of this section is

Theorem 7.1 Let WLε andW∆ε be defined as in (3.1), and let the correlation
functionsqε with Fourier coefficientsqε

k satisfy Assumptions 7.3 and 7.4 below. For
everyT > 0, κ > 0, andp ≥ 1 there exists a constantC and a joint realisation of
WLε andW∆ε such that

E
(

sup
t∈[0,T ]

‖WLε(t)− πεW∆ε(t)‖p
C0

u

)
≤ Cε

p
2
−κ ,

for everyε ∈ (0, 1).

We will actually prove a more general result, see Proposition 7.8 below, which
has Theorem 7.1 as an immediate corollary. The general result allows the linear
operatorLε to be essentially an arbitrary real differential operator instead of re-
stricting it to the operator−1− ε−2(1+ ε2∂2

x)2. Our main technical tool is a series
expansion of the stochastic convolution together with Lemma A.1, which will be
proved in Section A.1 below. The expansion with respect to space is performed
using Fourier series. For the expansion in time we do not use Karhunen-Loeve
expansion directly, since we do not necessarily need an orthonormal basis to apply
Lemma A.1. Our choice of an appropriate basis will simplify the coefficients in
the series expansion significantly (cf. Lemma A.2). We start by introducing the
assumptions required for the differential operatorP (i∂x).

Assumption 7.2 LetP denote an even functionP : R → R satisfying the follow-
ing properties:

P1 P is three times continuously differentiable.

P2 P (ζ) ≥ 0 for all ζ ∈ R andP (0) > 0.

P3 The set{ζ |P (ζ) = 0} is finite and will be denoted by{±ζ1, . . . ,±ζm}.
Note thatξj 6= 0.
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P4 P ′′(ζj) > 0 for j = 1, . . . ,m.

P5 There existsR > 0 such thatP (ζ) ≥ |ζ|2 for all ζ with |ζ| ≥ R.

Note that choosingP even ensures thatP (i∂x) is a real operator, but our results
also hold for non-evenP , up to trivial notational complications.

We now make precise the assumptions on the noise that drives our equation.
Consider an even real-valued distributionq such that its Fourier transform satisfies
q̂ ≥ 0. Then,q(x)δ(t) is the correlation function for a real distribution-valued
Gaussian processξ(x, t) with x, t ∈ R2, i.e. a process such thatEξ(s, x)ξ(t, y) =
δ(t− s)q(x− y). We restrict ourself to correlation functions in the following class:

Assumption 7.3 The distributionq is such that̂q ∈ L∞(R) and q̂ is globally Lip-
schitz continuous.

At this point, a small technical difficulty arises from the fact that we want to replace
ξ by a2L/ε-periodic translation invariant noise processξε which is close toξ in
the bulk of this interval. Denote byqε the2L/ε-periodic correlation function ofξε
and byqε

k its Fourier coefficients,i.e.

qε
k =

∫ L/ε

−L/ε
qε(x) e−i kπε

L
x dx . (7.1)

One natural choice is to take forqε the periodic continuation of the restriction ofq
to [−L/ε, L/ε]. This does however not guarantee thatqε is again positive definite.
Another natural choice is to defineqε via its Fourier coefficients by

qε
k =

∫ ∞

−∞
q(x) e−i kπε

L
x dx , (7.2)

which corresponds to takingqε(x) =
∑

n∈Z q(x+2nL/ε). This guarantees thatqε

is automatically positive definite, but it requires some summability ofq. Note that
for noise with bounded correlation length (i.e. support ofq uniformly bounded)
(7.1) and (7.2) coincide forε > 0 sufficiently small.

We choose not to restrict ourselves to one or the other choice, but to impose
only a rate of convergence of the coefficientsqε

k towardsq̂(kπε/L):

Assumption 7.4 Let q be as in Assumption 7.3. Suppose there is a non-negative
approximating sequenceqε

k that satisfies

sup
k∈N0

|
√
qε
k −

√
q̂(kπε/L)| ≤ Cε ,

for all sufficiently smallε > 0.

Example 7.5 A simple example of noise fulfilling Assumptions 7.3 and 7.4 is given
by space-time white noise. Hereq̂(k) = 1 and the natural approximating sequence
is qε

k = 1 for all k.
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A more general class of examples is given by the following lemma.

Lemma 7.6 Let q be positive definite and such thatx 7→ (1 + |x|2) q(x) is in L1.
Defineqε

k either by (7.2) or by (7.1) (in the latter case, we assume additionally that
the resultingqε are positive definite). Then Assumptions 7.3 and 7.4 are satisfied.

Proof. This follows from elementary properties of Fourier transforms.

Let us now turn to the stochastic convolution, which is the solution to the linear
equation

dWLε(x, t) = LεWLε(x, t) dt+
√
Qε dW (x, t) , (7.3)

where
Lε = −1− ε−2P (εi∂x) ,

W is a standard cylindrical Wiener process on L2([−L,L]), and the covariance
operatorQε is given by the following definition.

Definition 7.7 Let Assumption 7.4 be true. Defineqε as the function such thatqε
k

are its Fourier coefficients (cf. (7.1)). Then defineQε as the rescaled convolution
with qε, i.e.

(Qεf)(x) =
1
ε

∫ L

−L
f (y) qε

(x− y

ε

)
dy .

Let us expandWLε into a complex Fourier series. Denote as usual byek(x) =
eikπx/L/

√
2L the complex orthonormal Fourier basis on [−L,L]. Define further-

moreP ε by

P ε(k) =
1
ε2
P
(kεπ
L

)
+ 1

SinceQε commutes withLε, we can write the stochastic convolution as

WLε(x, t) =
√
Qε

∫ t

0
eLε(t−s)dW (x, s)

=
∞∑

k=−∞

√
qε
k ek(x)

∫ t

0
exp(−P ε(k) (t− s)) dwk(s) ,

where the{wk}k∈Z are complex standard Wiener processes that are independent,
except for the relationw−k = wk. We approximateWLε(x, t) by expandingP in a
Taylor series up to order two around its zeroes. We thus define the approximating
polynomialsP ε

j by

P ε
j (k) =

P ′′(ζj)π2

2L2

(
k − Lζj

επ

)2
+ 1 .

With this notation, the approximationΦ(x, t) is defined by

Φ(x, t) = 2Re
m∑

j=1

√
q̂(ζj)

∞∑
k=−∞

ek(x)
∫ t

0
exp(−P ε

j (k)(t− s)) dw̃k,j(s) , (7.4)
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where thew̃k,j ’s are complex i.i.d. complex standard Wiener processes. At this
point, let us discuss a rewriting ofΦ which makes the link with the notations used
in the rest of this article. We decomposeLζj

επ into an integer part and a fractional
part, so we write it as

Lζj
επ

= δj + kj , δj ∈ [−1
2 ,

1
2 ] , kj =

[Lζj
επ

]
∈ Z.

As before [z] denotes the nearest integer toz ≥ 0, with the convention that [12 ] = 1.
For z < 0, we define [z] = −[−z]. Extend form > 1 the definition of the Hilbert
spaceHa = L2([−L,L],Cm) and the definition of the projection

πε : Ha 7→ Hu

A→ 2Re
m∑

j=1

Aj(x)e
iπkj

L
x .

With this notation, we can writeΦ asΦ(t) = πεΦa(t), where thej-th component
of Φa solves the equation

dΦa
j (t) = ∆jΦa

j (t) dt+
√
q̂(ζj) ηj(t) . (7.5)

Here, theηj ’s are independent complex-valued space-time white noises and the
Laplacian-type operator∆j is given by

∆j = −P
′′(ζj)
2

(
i∂x +

πδj
L

)2
.

Now we can prove the following approximation result.

Proposition 7.8 Let Assumptions 7.2, 7.3 and 7.4 hold and considerΦ andWLε

as defined in (7.3) and (7.5). Then for everyT > 0, κ > 0 and everyp ≥ 1, there
exists a constantC and joint realisations of the noisesW andηi such that

E
(

sup
x∈[−L,L]

sup
t∈[0,T ]

|Φ(x, t)−WLε(x, t)|p
)
≤ Cεp/2−κ .

Remark 7.9 This result can not be generalised to dimensions higher than one,
since the stochastic convolution of the Laplace operator with space-time white
noise is then not even in L2. It the zeros ofP are degenerate,i.e.P behaves like
(k − ζj)2d for somed ∈ {2, 3, . . .} then we would obtain an amplitude equation
with higher order differential operator, and we can proceed to higher dimension.
The other option would be to use fractional noise in space, which is more regular
that space-time white noise. Using the scaling invariance of fractional noise, we
would obtain fractional noise in the amplitude equation.
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Proof. It will be convenient for the remainder of the proof to distinguish between
the positive rootsζj and the negative roots−ζj of P , so we defineζ−j = −ζj . We
start by writingΦ =

∑m
j=1(Φ

(j) + Φ(−j)) with

Φ(j)(x) =

 Φa
j (x) e

iπkj
L

x for j > 0,

Φa
j (x) e−

iπkj
L

x for j < 0.
(7.6)

For r > 0 sufficiently small andR as inP5, we decomposeZ into several regions:

K(j)
1 =

{
k ∈ Z

∣∣∣ ∣∣∣kεπ
L

− ζj

∣∣∣ < r
}

, K1 = K(0)
1 =

m⋃
j=1

(K(j)
1 ∪K(−j)

1 ) ,

K2 =
{
k ∈ Z

∣∣∣ ∣∣∣kεπ
L

∣∣∣ < R
}

, K3 = Z \K2 .

We suppose thatr > 0 is sufficiently small such that the{K(j)
1 }j=±1,...,±m are

disjoint and such that0 6∈ K1. The splitting intoK2 andK3 is mainly for techni-
cal reasons. We denote byΠ(j)

1 , Π2, etc. the corresponding orthogonal projection
operators in L2([−L,L]). We also define

γk = γ(0)
k =

1
ε2
P
(kεπ
L

)
+ 1 ,

γ(j)
k =

P ′′(ζj)π2

2L2

(
k − Lζj

επ

)2
+ 1 for j = ±1, . . . ,±m

It is a straightforward calculation, using Taylor expansion and Assumption 7.2,
that there exist constantsc andC independent ofε andL such that one has the
following properties forj = ±1, . . . ,±m:

|γk − γ(j)
k | ≤ Cε

L3

∣∣∣k − ζjL

πε

∣∣∣3 , k ∈ K(j)
1 , (7.7a)

|γ(j)
k | ≥ 1 +

c

L2

∣∣∣k − ζjL

πε

∣∣∣2 , k ∈ K(j)
1 , (7.7b)

|γ(j)
k | ≥ c

ε2
, k ∈ K2 \K(j)

1 , (7.7c)

|γ(j)
k | ≥ ck2/L2 , k ∈ K3 . (7.7d)

In view of the series expansion of Lemma A.2, we also define

a(j)
n,k = C

√√√√1− (−1)ne−γ(j)
k T

(γ(j)
k )2T 2 + π2n2

, (7.8)

where the constantC depends only onT . We definean,k in the same way withγ(j)
k

replaced byγk. With these definitions at hand, we can use Lemma A.2 to write
Φ(j) as

Φ(j)(t, x) =
√
q̂(ζj)

∞∑
k=−∞

∑
n∈Z

a(j)
n,kξ

(j)
n,ke

(j)
n,k(x, t) ,
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where we defined
e(j)
n,k(x, t) = ek(x)(e

iπn
T

t − e−γ(j)
k t) ,

and where the{ξ(j)
n,k : n ∈ Z} are independent complex-valued Gaussian random

variables. Note thate(−j)
−n,−k(x, t) = e(j)

n,k(x, t), so that (7.6) implies the relation

ξ(−j)
−n,−k = ξ(j)

n,k. The processWLε(t, x) can be expanded in a similar way as

WLε(t, x) =
∞∑

k=−∞

√
qε
k

∑
n∈Z

an,kξn,ken,k(x, t) , (7.9)

with
en,k(x, t) = ek(x)(e

iπn
T

t − e−γkt) ,

where{ξn,k : n ∈ Z, k ∈ Z} are i.i.d standard complex-valued Gaussian random
variables, with the exception thatξ−n,−k = ξn,k. Note that this implies thatξ0,0

is real-valued. In order to be able to compareWLε andΦ, we now specify how
we choose the random variablesξn,k to relate to the random variablesξ(j)

n,k. For

j = ±1, . . . ,±m we defineξ(j)
n,k := ξn,k for all k ∈ K(j)

1 . Note that this is

consistent with the relationsξ(−j)
−n,−k = ξ(j)

n,k andξ−n,−k = ξn,k, and with the fact

thatK(−j)
1 = −K(j)

1 . We will see later in the proof that the definition ofξ(j)
n,k for k 6∈

K(j)
1 does not really matter, so we choose them to be independent of all the other

variables, except for the relationξ(−j)
−n,−k = ξ(j)

n,k. The the proof of the proposition

is split into several steps. First we bound the difference of1
2Π(j)

1 Φ(j) andΠ(j)
1 WLε .

Then we show that all remaining terms (1−Π(j)
1 )Φ(j) and (1−Π(0)

1 )WLε are small.

Step 1 We first prove that forj = ±1, . . . ,±m

E sup
x∈[−L,L]

sup
t∈[0,T ]

|Π(j)
1 Φ(j)(x, t)−Π(j)

1 WLε(x, t)|p ≤ Cεp/2−κ . (7.10)

We thus want to apply Lemma A.1 to

I(t, x) :=
∑

k∈K(j)
1

∑
n∈Z

ξn,k(
√
q̂(ζj)a

(j)
n,ke

(j)
n,k(x, t)−

√
qε
kan,ken,k(x, t))

Define
fn,k(x, t) =

√
q̂(ζj)a

(j)
n,ke

(j)
n,k(x, t)−

√
qε
kan,ken,k(x, t).

Note first that Lip(fn,k) ≤ C(1 + |k| + |n| + |γk|) and similarly for Lip(f (j)
n,k).

Therefore, the uniform bounds on̂q andqε
k, together with the definition ofan,γ

imply that there exists a constantC such that Lip(fn,k) is bounded byC(|k| + 1)
for all k ∈ Kj

1 andn ∈ N, where the constant only depends onT . Note that
the Lipschitz constant is taken with respect tox and t. For k ∈ K(j)

1 we have
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|k| ≤ C/ε, and hence Lip(fn,k) ≤ Cε−1. Now Lemma A.1 implies (7.10) if we
can show that for everyκ > 0 one has∑

k∈K(j)
1

∑
n∈Z

‖fk,n‖2−κ
∞ ≤ Cκε

1−κ , (7.11)

where theL∞-norm is again taken with respect tot andx. To verify (7.11) we
estimate‖fk,n‖∞ by

‖fk,n‖∞ ≤ |
√
q̂(ζj)−

√
qε
k||an,k|‖en,k‖∞ + |

√
q̂(ζj)||a(j)

n,k|‖e
(j)
n,k − en,k‖∞

+ |
√
q̂(ζj)||a(j)

n,k − an,k|‖en,k‖∞
=: I1(n, k) + I2(n, k) + I3(n, k) ,

and we bound the three terms separately. First by assumption‖q̂‖∞ ≤ C. Fur-
thermore,an,k ≤ C/(1 + |n|) and‖ek,n‖∞ ≤ C for all k ∈ K(j)

1 andn ∈ N, and
analogous for the terms involvingj. Again by assumption|

√
q̂(kj)−

√
qε
k| ≤ Cε

for all k ∈ K(j)
1 , so thatI1(n, k) is bounded by

|I1(n, k)| ≤ Cε

1 + |n|
. (7.12)

And hence,
∑

k,n |I1(n, k)|2−κ ≤ Cε1−κ. For everyt > 0 and everyγ′ > γ > 0

|e−γt − e−γ′t| ≤ Ct|γ − γ′|e−γt .

Combining this with (7.7a) one has‖e(j)
n,k − en,k‖∞ ≤ Cε|k − ζjL

πε | for k ∈ K(j)
1 .

Using

∞∑
n=−∞

(an,k)2−κ ≤ C

∞∑
n=−∞

(γk + |n|)κ−2 ≤ C/(γk(1 + γk)),

we derive
∑∞

n=0 I2(n, k)2−κ ≤ Cε2−κ. Which gives the claim. ConcerningI3, a
straightforward estimate using (7.7a) shows that

|I3(n, k)| ≤ C|an,k − a(j)
n,k| = Cε

1 +
∣∣∣k − ζjL

πε

∣∣∣
γk + |n|

.

Using
∑∞

n=−∞(γk + |n|)κ−2 ≤ C/(γk(1 + γk)) we derive
∑∞

n=−∞ I3(n, k)2−κ ≤
C
γk
ε2−κ, where we can use (7.7b). Combining all three estimates, bound (7.11)

follows now easily.

Step 2 We now prove that

E sup
x∈[−L,L]

sup
t∈[0,T ]

|Π3Φ(j)(x, t)|p ≤ Cεp/2−κ , (7.13)
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and
E sup

x∈[−L,L]
sup

t∈[0,T ]
|Π3WLε(x, t)|p ≤ Cεp/2−κ . (7.14)

Both bounds are obtained in the same way, so we only show how to prove (7.14).
Using the bound onqε

k, (7.8) and (7.7d) foran,k, and the definition ofen,k, we
readily obtain the bounds

‖qε
kan,ken,k‖∞ ≤ C

k2 + |n|
, Lip(qε

kan,ken,k) ≤ Ck .

Now (7.14) follows immediately from Lemma A.1, noticing that

∞∑
n∈Z

(k2 + |n|)−δ ≤ C|k|2−2δ , for |k| ≥ 1 andδ > 1.

Furthermore,K3 only contains elementsk larger thanCε−1.

Step 3 For j = 0, . . . ,m we denote byΠ(j)
21 the projector associated to the set

K2 \K(j)
1 . We show that

E sup
x∈[−L,L]

sup
t∈[0,T ]

|Π(0)
21WLε(x, t)|p ≤ Cεp/2−κ ,

and in a completely similar way we derive

E sup
x∈[−L,L]

sup
t∈[0,T ]

|Π(j)
21Φ(j)(x, t)|p ≤ Cεp/2−κ .

By (7.8) and (7.7c) we get

‖qε
kan,ken,k‖∞ ≤ C

ε−2 + |n|
, Lip(qε

kan,ken,k) ≤ Cε−1 .

The estimate follows then again from Lemma A.1, noticing thatK2−K1 contains
less thanO(ε−1) elements.

Summing up the estimates from all the previous steps concludes the proof.

Appendix A Technical Estimates

A.1 Series expansion for stochastic convolutions

This section provides technical results on series expansion and their regularity of
stochastic convolutions, which are necessary for the proofs.

Lemma A.1 Let {ηk}k∈I be i.i.d. standard Gaussian random variables (real or
complex) withk ∈ I an arbitrary countable index set. Moreover let{fk}k∈I ⊂
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W 1,∞(G,C) where the domainG ⊂ Rd has sufficiently smooth boundary (e.g.
piecewiseC1). Suppose there is someδ ∈ (0, 2) such that

S2
1 =

∑
k∈I

‖fk‖2
L∞ <∞ and S2

2 =
∑
k∈I

‖fk‖2−δ
L∞ Lip(fk)δ <∞

Definef (ζ) =
∑

k∈I ηkfk(ζ). Then, with probability one,f (ζ) converges abso-
lutely for anyζ ∈ G and, for anyp > 0, there is a constant depending only onp,
δ, andG such that

E‖f‖p
C0(G) ≤ C(Sp

1 + Sp
2 ) .

Proof. From the assumptions we immediately derive thatf (x) andf (x)−f (y) are
a centred Gaussian for anyx, y ∈ G. Moreover, the corresponding series converge
absolutely. Using that theηk are i.i.d., we obtain

E|f (x)− f (y)|2 =
∑
k∈I

|fk(x)− fk(y)|2

≤
∑
k∈I

min{2‖fk‖2
L∞ ,Lip(fk)2|x− y|2}

≤ 2
∑
k∈I

‖fk‖2−δ
L∞ Lip(fk)δ|x− y|δ

= 2S2
2 |x− y|δ , (A.1)

where we used that min{a, bx2} ≤ a1−δ/2bδ/2|x|δ for anya, b ≥ 0. Furthermore,

E|f (x)|2 ≤
∑
k∈I

‖fk‖2
L∞ = S2

1 . (A.2)

Considerp > 1 sufficiently large andα > 0 sufficiently small. Using Sobolev
embedding (cf. [Ada75, Theorem 7.57]) and the definition of the norm of the
fractional Sobolev space in [Ada75, Theorem 7.48] we derive forαp > d that

E‖f‖p
C0(G) ≤ CE‖f‖p

W α,p(G)

≤ CE
∫

G

∫
G

|f (x)− f (y)|p

|x− y|d+αp
dxdy + CE

∫
G
|f (x)|pdx

≤ C

∫
G

∫
G

(E|f (x)− f (y)|2)p/2

|x− y|d+αp
dxdy + C

∫
G

(E|f (x)|2)p/2dx ,

where we used thatf (x) andf (x) − f (y) are Gaussian. Note that the constants
depend onp. Using (A.1) and (A.2), we immediately see that

E‖f‖p
C0(G) ≤ CSp

1 + CSp
2

providedα ∈ (0, δ/2). Note finally that we neededp > d/α to have the Sobolev
embedding available. The case ofp ≤ d/α follows easily using Ḧolder inequality.
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Lemma A.2 Letγ ∈ R and let

a(t) =
∫ t

0
e−γ(t−s) dw(s) ,

withw a standard complex Wiener process, i.e.Ew(t)w(s) = 0 andEw(t)w(s) =
min{t, s}. Then, fort ∈ [0, T ], a(t) has the following representation:

a(t) =
∑
n∈Z

an,γξn(e
πint

T − e−γt) , (A.3)

where thean,γ are given by the Fourier-coefficients of12γ e
−γ|t−s| on [−T, T ]

a2
n,γ = C

1− (−1)ne−γT

γ2T 2 + π2n2

with some constantC depending only on the timeT . and the{ξn}n∈Z are i.i.d.
complex normal random variables, i.e.Eξ2n = 0 andE|ξn|2 = 1.

Proof. The stationary Ornstein–Uhlenbeck process

ã(t) =
∫ t

−∞
e−γ(t−s) dw(s)

has the correlation function:

Eã(t)ã(s) =
e−γ|t−s|

2γ
.

Expandinge−γ|z| in Fourier series on [−T, T ] we obtain

ã(t) =
∑
n∈Z

an,γξne
iπnt/T ,

for i.i.d. normal complex-valued Gaussian random variablesξn. The claim now
follows from the identitya(t) = ã(t)− e−γtã(0).

A.2 A-priori estimate for the amplitude equation

This section summarises and proves technical a-priori estimates for an equation of
the type (GL). Most of them are obtained by standard methods and the proofs will
be omitted. The main non-trivial result is Theorem A.7 about the concentration in
Fourier space. We consider the equation

∂tA = α∂2
xA+ iβ∂xA+ γA− c|A|2A+ ση (A.4)

with periodic boundary conditions on [−L,L], whereα and c are positive and
σ, γ, β ∈ R andη denotes space–time white noise.
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Equation (GL) is of the form (A.4) withα = 4, β = −8δε, γ = ν − 4δε and
c = 3 with |δε| ≤ π

2L . Obviously, the constantsβ andγ areε-dependent, but
uniformly bounded inε > 0, which is a straightforward modification of the result
presented.

Further, we denote byW the complex cylindrical Wiener process such that
∂tW = η. Define the stochastic convolution

ϕ = σWα∂2
x−1 and B = A− ϕ. (A.5)

Then

∂tB = α∂2
xB + iβ∂x(B + ϕ) + γB + (γ + 1)ϕ− c|B + ϕ|2(B + ϕ). (A.6)

Of course this equation is only formal, asϕ is not differentiable. But in what
follows, we can always use smooth approximations ofϕ to justify the arguments.
The mild formulation of (A.6) is

B(t) = eα∂2
xtA(0) + iβ

∫ t

0
∂xe

α∂2
x(t−s)(B + ϕ)(s)ds (A.7)

+
∫ t

0
eα∂2

x(t−s)
(
γB(s) + (γ + 1)ϕ(s)− c|B + ϕ|2(B + ϕ)(s)

)
ds .

We will use the following Lemma, which fails to be true in higher dimensions for
complex space-time white noiseη.

Lemma A.3 For any choice ofq ≥ 1 andT0 > 0 there are constants such that

sup
t∈[0,T0]

E‖ϕ(t)‖q
C0

a
≤ C and E sup

t∈[0,T0]
‖ϕ(t)‖q

C0
a
≤ C.

The results of the previous lemma are obviously also true if we replace theC0-
norm by anLp-norm. The constant then depends also onp. The proof of this
lemma is standard seee.g. [BH04] or [BMPS01, Theorem 5.1.]. Now we easily
prove the following result via standard energy-type estimates forA− ϕ.

Proposition A.4 For any choice ofp ≥ 1, q ≥ 1, andT0 > 0 there are constants
such that

sup
t≥T0

E‖A(t)‖q
Lp

a
≤ C,

with constant independent ofA(0). Moreover, for any choice ofc0 > 0, p ≥ 1,
q ≥ 1, andT0 > 0 there are constants such that if‖A(0)‖q

Lp
a
≤ c0 then

sup
t∈[0,T0]

E‖A(t)‖q
Lp

a
≤ C and E sup

t∈[0,T0]
‖A(t)‖q

Lp
a
≤ C.

Now we can easily verify the following result using the mild formulation of solu-
tions.
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Proposition A.5 For any choice ofc0 > 0, q ≥ 1, andT0 > 0 there are constants
such that ifE‖A(0)‖3q

C0
a
≤ c0 then

E sup
t∈[0,T0]

‖A(t)‖q
C0

a
≤ C.

Note that it is sufficient for Proposition A.5 to assume thatA(0) is admissible.

Remark A.6 We need the condition on the3qth moment of the initial conditions
to ensure thatE supt∈[0,T0] ‖B|B|2(t)‖q

Lp
a
≤ C.

In the following we establish that a solutionA of (A.4) with admissible initial
conditions, in the sense of Definition 3.4, stays concentrated in Fourier space in
theC0-topology for all times.

Theorem A.7 Let A(t) be the solution of (A.4) and assume that the initial con-
ditions are admissible. Then for everyp ≥ 1 and T0 > 0 there exist positive
constantsκ, C0 with κ ≤ 1 such that

E sup
t∈[0,T0]

‖Πc
δ/εA(t)‖p

C0
a
≤ Cεp/2−κ ,

whereΠc
δ/ε was defined in (2.7).

Proof. We start by establishing the fact that admissible initial conditions are con-
centrated in Fourier space. According to Definition 3.4 the initial conditions admit
the decompositionA(0) = W0 +A1. Consider first the Gaussian partW0. We can
use the series expansion of Remark 3.6 together with Lemma A.1 to verify

E‖Πc
δ/εW0‖p

C0
a
≤ Cpε

p/2−κ.

Let now{A1
k}k∈Z denote the Fourier coefficients ofA1. We use the fact thatA1 is

bounded inH1
a to deduce

‖Πδ/εA1‖2
C0

a
≤
(∑
|k|≥ δ

ε

|A1
k|
)2
≤
∑
|k|≥ δ

ε

|k|−2
∑
k∈Z

|k|2|A1
k|2

≤ Cε1−κ‖A1‖2
a,1 .

From the above estimates we deduce that

E‖Πc
δ/εA(0)‖p

C0
a
≤ Cεp/2−κ .

Let us consider (A.7). First using the boundedness of the semigroup

E‖Πc
δ/εe

αt∂2
xA(0)‖p

C0
a
≤ CE‖Πc

δ/εA(0)‖p
C0

a
≤ Cεp/2−κ .
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Using the factorisation method (seee.g.[BMPS01, Theorem 5.1.]) we easily get
for the stochastic convolutionϕ defined in (A.5) the bound

E
∥∥∥ sup

t∈[0,T0]
Πc

δ/εϕ(t)
∥∥∥p

a
≤ C

( ∑
|k|≥δ/ε

|k|−2+2κ
)p/2

≤ Cεp/2−κ. (A.8)

To proceed, we use the stability of the semigroup and the embedding ofHζ into C0
a

for ζ ∈ (1
2 , 1). Using this, it is elementary to show that

‖Πc
δ/εe

tα∂2
xh‖C0

a
≤ Ce−ctε−2

t−ζ/2‖h‖a ,

for everyh ∈ Ha. Hence∥∥∥∥Πc
δ/ε

∫ t

0
e(t−s)∂2

xh(s) ds

∥∥∥∥
C0

a

≤ C

∫ t

0
e−Csε−2

s−α/2ds sup
s∈[0,T ]

‖h(s)‖a

≤ Cε2−ζ sup
s∈[0,T ]

‖h(s)‖a .

Moreover, forh =
∑
hkek by a crude estimate∥∥∥∥Πc

δ/ε∂x

∫ t

0
e(t−s)α∂2

xh(s) ds

∥∥∥∥
C0

a

≤
∑

|k|≥δ/ε

∫ t

0
|k|e−c(t−s)k2 |hk(s)|ds

≤ C

∫ t

0
e−Csε−2

s−(1+ζ)/2ds sup
s∈[0,t]

‖h(s)‖a

≤ Cε1−ζ sup
s∈[0,t]

‖h(s)‖a .

Using (A.7), Proposition A.5, and (A.8) and choosingζ > 1
2 sufficiently small (e.g.

ζ = 1
2 + κ

p ), it is now straightforward to verify the assertion first forB and hence
for A.
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