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Abstract

We consider the stochastic Swift-Hohenberg equation on a large domain near its
change of stability. We show that, under the appropriate scaling, its solutions
can be approximated by a periodic wave, which is modulated by the solutions
to a stochastic Ginzburg-Landau equation. We then proceed to show that this
approximation also extends to the invariant measures of these equations.
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1 Introduction

We present a rigorous approximation result of stochastic partial differential equa-
tions (SPDEs) by amplitude equations near a change of stability. In order to keep
notations at a bearable level, we focus on approximating the stochastic Swift-
Hohenberg equation by the stochastic Ginzburg-Landau equation, although our
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results apply to a larger class of stochastic PDEs or systems of SPDEs. Similar
results are well-known in the deterministic case, see for instance [CE90, MSZ00].
However, there seems to be a lack of theory when noise is introduced into the sys-
tem. In particular, the treatment of extended systdraswhen the spatial variable
takes values in an unbounded domain) is still out of reach of current techniques.

In a series of recent articles [BMPS01@BBa, Bb03b, BH04], the amplitude
of the dominating pattern was approximated by a stochastic ordinary differential
equation (SODE). On a formal level or without the presence of noise, the derivation
of these results is well-known, see for instance (4.31) or (5.11) in the comprehen-
sive review article [CH93] and references therein. This approach shows its limita-
tions on large domains, where the spectral gap between the dominating pattern and
the rest of the equation becomes small. It is in particular not appropriate to explain
modulated pattern occurring in many physical models and experiment®.ee
[Lyt96, LM99] or [CH93] for a review). The validity of the SODE-approximation
is limited to a small neighbourhood of the stability change, which shrinks, as the
size of the domain gets large.

For deterministic PDEs on unbounded domains it is well-knownegefCE90,
MS95, KSM92, Sch96], that the dynamics of the slow modulations of the pattern
can be described by a PDE which turns out to be of Ginzburg-Landau type.

Since the theory of translational invariant SPDEs on unbounded domains is
still far from being fully developed, we adopt in the present article a somewhat in-
termediate approach, considering large but bounded domains in order to avoid the
technical difficulties arising for SPDEs on unbounded domains. Note that the same
approach has been used in [MSZ00] to study the deterministic Swift-Hohenberg
equation. It does not seem possible to adapt the deterministic theory directly to the
stochastic equation. One major obstacle is that the whole theory for determinis-
tic PDE relies heavily on good a-priori bounds for the solutions of the amplitude
equation in spaces of sufficiently smooth functions. Such bounds are unrealistic
for our stochastic amplitude equation, since it turns out to be driven by space-time
white noise. Its solutions are therefore onhHOIder continuous in space and time
for a < 1/2. Nevertheless, the choice of large but bounded domains captures and
describes all the essential features of how noise in the original equation enters the
amplitude equation.

1.1 Setting and results

In this article, we concentrate on deriving the stochastic Ginzburg-Landau equation
as an amplitude equation for the stochastic Swift-Hohenberg equation, though we
expect that similar results hold for a much wider class of equations, see remark
2.5. The Swift-Hohenberg equation is a celebrated toy model for the convective
instability in the Rayleigh-Bnard convection. A formal derivation of the equation
from the Boussinesq approximation of fluid dynamics can be found in [HS77].

In the following we consider solutions to

OU = —(1+ 022U + %l — U + 1€, (SH)
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whereU (z,t) € R satisfies periodic boundary conditions 8 = [—L/e, L/¢].
The noiset. is assumed to be real-valued homogeneous space-time noise. To be
more precis€. is a distribution-valued centred Gaussian field such that

Eée(z, s)ée(y, 1) = 6(t — s)g=(|z — y]) - 1.1)

The family of correlation functions. is assumed to converge in a suitable sense
to a correlation functiony. One should think for the moment q@f as simply
being the2 L /e-periodic continuation of the restriction gfto D.. We will state in
Assumption 7.4 the precise assumptions;@ndg.. This will include space-time
white noise and noise with bounded correlation length.

Before we formulate our main results, let us briefly discuss why we expect
(SH) to have a scaling limit of the form

U(z,t) = 2¢Re(a(ex, £2t)e™) (1.2)

for small values ot and why the factoe? in front of the noise in equation (SH)

is the correct factor to balance with the linear terteU and the nonlinearity/3

so that all three contribute to the limiting equation, eqn. (1.4) below. Since the
nonlinearity dominates the linear instability @t>> ¢, we expect the solutions to
(SH) to be of ordek, hence the term in front of the right-hand side of (1.2). Itis
then natural to consider timescales of ordet, so that both the linear instability
and the nonlinearity contribute significantly to the dynamics. This explains the
argument2¢. Concerning the relevant spacescale and the t&fmmote that ifr

is “demodulated” by writing it ag/(z,t) = Re(A(x,t)e'®), then the differential
operator—(1 + 02)? acting onU is close to a multiple of the Laplacian acting dn
(neglecting terms of ordet? A andod: A). This suggests that one should look at the
solutions on a spacescalesof* (since therd? A ~ 2 A is of the same order as the
linear instability and the nonlinearity), if one wants the linear differential operator
to give a non-trivial contribution in the scaling limit. It remains to explain the
factors> in front of the noise. This is an immediate consequence of a dimensional
analysis of the stochastic heat equation

NA=02A+JE, (1.3)

(where¢ is space-time white noise antis the noise strength), which is expected
to describe the scaling limit of (SH) if = 0 and no nonlinearity is present. The
scaling behaviour of, formally given by¢(azx, 5t) a (aﬁ)‘% &(x, t) immediately
implies that on a space interval of order! and a time interval of order—2,
solutions to (1.3) are of ordef=—2. Therefore, the noise should enter into (SH)
with a prefactor of ordet =~ 5%, so that the corresponding contribution on the
time and space scales under consideration is of eardénother way of seeing this
is to notice that the solutions to the stochastic heat equation are (alﬁ’ﬁblﬁﬂ)jer

continuous in time an(%-H'c')Ider continuous in space. This roughness in time is
a direct consequence of the singularity of ordet in the L2-norm of the Heat



INTRODUCTION 4

kernel (see.g.[DPZ96, Thm 5.20]). Therefore, one would expect their size to be
of order Q‘% + x%)J. On the time and space scales under consideration, we see
again that/ ~ £ results in a contribution of order Note that if we were to study
the Swift-Hohenberg equation in a bounded domainot scaling withe, then a
noise strength of? would lead to the correct scaling, cf. [BMPSO01].

The main result of this article is an approximation result for solutions to (SH)
by means of solutions to the stochastic Ginzburg-Landau equation. We consider a
class of “admissible” initial conditions given in Definition 3.4 below. This class is
slightly larger than that of{'-valued random variables with bounded moments of
all orders and is natural for the problem at hand, due to the lack of unitetm
estimates for the stochastic convolution. We show in Theorem 5.1 that the solution
of (SH) with arbitrary initial conditions becomes admissible after a transient time.

Our main result (cf. Theorem 4.1) is the following:

Theorem 1.1 (Approximation) Let U be given by the solution of (SH) with an
admissible initial condition written ag/y(z) = 2cRe(ag(ex)e’). Consider the
solutiona(X, T') to the stochastic Ginzburg-Landau equation

Ora = 40%a +va —3|al*a+/¢(1)n, X €[-L,L],a(0) =ao, (1.4)

wheren is complex space-time white noise apdenotes the Fourier transform of

q. Here,a is subject to suitable boundary conditions, i.e. those boundary condi-
tions such that(X, T)e*X/¢ is 2L-periodic. Then, for ever§, > 0, = > 0, and

p > 1, one can find joint realisations of the noisgand &, such that

. 1/
(]E sup sup |U(z,t) — 2eRe(a(en, 62t)e”)]p> : < Cyp g3/2=r  (1.5)
€2t€[0,T0] z€De

for everye € (0, 1].

Note that solutions to (SH) tend to be of orderas can be seen from the fact
that this is the point where the dissipative nonlinearity starts to dominate the linear
instability. Therefore, the ratio between the size of the error and the size of the
solutions is of ordee!/2. Using an argument similar to the one in [BHO04], it is
then straightforward to obtain an approximation result on the invariant measures
for (SH) and (1.4):

Theorem 1.2 (Invariant Measures) Let v, . be the invariant measure for (1.4)
and lety, . be an invariant measure for (SH). Then, one can construct random
variablesa, and U, with respective laws, . and n, . such that for every. > 0
andp > 1

. 1/
(E sup |Us(z) — 2€Re(a*(5x)e“)‘l’) "<

x€D,

for everye € (0, 1].
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Let us remark that, . is actually independent &f providedL € enN.

Remark 1.3 The correctiorr ™" appearing in Theorems 1.1 and 1.2 is a direct con-
sequence of the error estimates on the linearised equations obtained in Section 7.
One could in principle obtain logarithmic bounds using the Fernique-Talagrand
theorem from the theory of Gaussian processes. It is not expected, however, that a
bound®(e3/2) without any corrections holds.

Most of the present article is devoted to the proof of Theorem 1.1. We will then
prove attractivity, Theorem 5.1 in Section 5 and Theorem 1.2 in Section 6, while
Section 7 provides a very general approximation result for linear equations, that is
used in the proof of Theorem 1.1.

The remainder of this paper is organised as follows. Section 2 is devoted to a
formal justification of our results. The main step in the proof of Theorem 1.1 is then
to define aresidual which measures how well a given process approximates solu-
tions to (SH) via the variation of constants formula. Section 3 provides estimates
for this residual that are used in Section 4 to prove the main approximation result.
Section 5 justifies the assumptions on the initial conditions required for the proof
of the approximation result, and Section 6 applies the result to the approximation
of invariant measures. The final Section 7 provides the approximation result for
linear equations in a fairly general setting.

Acknowledgements
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2 Formal Derivation of the Main Result

In order to simplify notations, we work from now on with the rescaled version
u(z, t) of the solutions of (SH), defined throudh(z,t) = cu(ex, ?t). Then,u
satisfies the equation

du = —e2(1 + 202 %u+vu —u® + €, (2.1)

with periodic boundary conditions on the domainif, L]. Here, we defined the
rescaled noisé.(z,t) = ¢ 3/2¢.(¢ 'z, e2t). This is obviously a real-valued
Gaussian noise with covariance given by

E&.(z,1)€(y, 5) = 8(t — s)e'qe(e ™ |z — yl) -

We define the operataf. = —1 — e~ 2(1 + £202)? subject to periodic boundary
conditionson L, L] and we seb = 1 + v, so that (2.1) can be rewritten as

O = Lou+u—u®+ & . (SH:)
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In order to handle the fact that the dominating moed€$/c are not necessarily
2L-periodic, we introduce the quantities

L 1 =« TE
Ns:[a}v 55:g*ZNEa Qastf,
where [z] € Z is used to denote the nearest integer of a real numbveth the
conventions that]] = 1 and [-z] = —[z].

With these notations, we rewrite the amplitude equation in a slightly different
way. SettingA(z, t) = a(z, t)e?=*, (1.4) is equivalent to

HA=ANA+DA=3|APA+ i)y, A.=—-1-4(3id, +6.)*, (GL)

with periodic boundary conditions, whengis another version of complex space-
time white noise. This transformation is purely for convenience, since periodic
boundary conditions are more familiar.

Remark 2.1 Note that the limiting equation (GL) does still dependsothrough

de. This effect is a consequence of the fact that our domain is large but neverthe-
less bounded and was already noticed in [MSZO0Q]. It is obvious however that the
“drift” term 2i0.0, in (GL) vanishes if we choose to let— 0 along the sequence
L/(me) € N. Note furthermore thap.| is bounded by independently of. As

far as bounds are concerned, the reader is therefore encouraged to think of (GL) as
being independent afand to think ofs. as being).

Before we proceed further, we fix a few notations that will be used throughout
this paper. We will consider solutions to (SHand (GL) in various function spaces,
but let us for the moment consider them #{[l=- L, L]). We thus denote b, the
L2-space of real-valued functions on [, L] which will contain the solutions to
(SH.) and byH,, the 2-space of complex-valued functions oA, L] which will
contain the solutions to (GL). We define the norniHy as half of the usual?-
norm,i.e.

1

L L
2 1 2 2 _ 2
=5 [ w@de, JAE= [ A@Pe. @2)

forallw € ‘H, and allA € H,.

Remark 2.2 The choice of adding a factdy in || - ||, may seem unusual and
confusing. However, this is the only way of making the operatorand.. defined

in (2.3) and (2.4) below a projection and an isometric embedding respectively. The
reason for not changing (2.3) and (2.4) instead is one of legacy: this is indeed
the notation used throughout all the existing literature. If we were to remove the
factor2 in (2.3), the termu|a|? in (1.4) would have a prefactae instead of3, thus
clashing with the existing literature on the subject.
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Figure 1: Action ofr. and...

We introduce the projection. : H, — H, used in (1.5)j.e.
(m.A)(x) = 2Re(A(x)e™New/ LY (2.3)
We also define the injection : H,, — H, by
(teu)(@) = uy expl—irNew/L) (2.4)

where, foru = 3, ., uj exp@nk/L), we definedu, = >, ur exprk/L) +
%uo. Sinceu is real-valued, one has of course the equality u. + u, where
u5 denotes the complex conjugatewaf. Furthermore, one has the relations

Teote =10t =1d, (2.5)

and the embedding is isometric. Herey} : 'H,, — H, denotes the adjoint of.
We also define the spadé, C H, as the image of.. Equation (2.5) implies in
particular thatr. = 7, if both operators are restricted 19,. Note also that. is
nota bounded operator between the correspondifigpaces, even thougt; is.

Remark 2.3 Intuitively, the action ofr. in Fourier space is to first translate the
spectrum to the right by~! and then to add its reflection around the= 0 axis.
The effect ofi. is to first cut off thek < 0 part and then translate the rest to the
left by e~!. Figure 2 illustrates the successive actions.ofind.. on an arbitrary
function in Fourier space.

With these notations in mind, we give a formal argument that shows why (GL)
is expected to yield a good approximation for (JHFirst of all, note that even
though:. o7, is not the identity, it is close to the identity when applied to a function
which is such that its Fourier modes with wavenumber larger #vdnare small.
This is indeed expected to be the case for the solutibhs (GL), since the heat
semigroupe2<t strongly damps high frequencies.

Hence,..n.A ~ A. Therefore, making the ansatz= 7. A and plugging it
into (SH.) yields

A~ 1 Lo A+ DA — 1.(m A)? + 1€,
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Figure 2: Spectra of the linear parts.

The left part of Figure 2 shows the spectrumiof £.. The right part shows

the spectrum of.(v + L), (which is interpreted as a self-adjoint operator from
H, to 'H,) in grey and the spectrum @k, + 7 in black. One sees that the two
are becoming increasingly similar as— 0, since the tip of the curve becomes

increasingly well approximated by a parabola.
Expanding the terma(. A)? we get

(7T5A)3 _ A3€3i7rNgw/L + 3A|A|26i7rN5x/L + 3A|A|26—i7rNgw/L + A3e—3i7rN5x/L _
Therefore, one has
Le(mA)? ~ ABPTNT/L L 3 | AP

Since the term with high wavenumbers will be suppressed by the linear part, we
can arguably approximate this Byl| 4|2, so that we have

NA~AA+DA—3|APA+ 1€, . (2.6)

It remains to analyse the behaviour:gf. in the limit of small values of. Note
that we can expangl. in Fourier series, so that

&, t) = ep Y \/Ge(ekm /D)gk(t)e™ /",
kez

where thet,(t) denote complex independent white noises, with the restriction that
¢ = &, and where we sef, = 1/+/2L. On a formal level, this yields far.£.

Laga(l'? t) Igv Z cr, Cj(c‘:kﬂ/L)fk(t)e”(k*NE)I/L
k=0

e Y Valme(Ne + k)/ D (0)e ™

k=—N¢,
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~er Y Vi)&W ™ ~ \/G1) n(e,1) .

kezZ

In this equation, we justify the passage from the second to the third line by the fact
that the linear part of (GL) damps high frequencies, so contributions from Fourier
modes beyond =~ ! can be neglected. Furthermores(N. + k)/L — 1 for
e —0.

Plugging the previous equation into (2.6), we obtain (GL). The aim of the
present article is to make this formal calculation rigorous.

Remark 2.4 The approach outlined above relies on the presence of a stable cubic
(or higher order) nonlinearity. For the moment, we cannot treat quadratic nonlin-
earities like the one arising in convection problems. See howeveORi] for a
result on bounded domains covering that situation or [Sch99] for a deterministic
result in unbounded domains.

Remark 2.5 Even though we restrict ourselves to the case of the stochastic Swift-
Hohenberg equation, it is clear from the above formal calculation that one expects
similar results to hold for a much wider class of equations. In fact, the linear result
is proved for a quite general class of operatB(s0,.) (cf. Section 7). Furthermore,

the main result of this paper, Theorem 1.1, is expected to hold for Stochastic PDE
of the type

U = —P(idy) U + 20U — F(U) + e3¢

with periodic boundary conditions o, = [—Le~!, L], for a large class of
stable cubic (or higher order) nonlineariti&s).

Before we proceed with the proofs of the results stated in the introduction, let us
introduce a few more notations that will be useful for the rest of this article.

2.1 Notations, projections, and spaces

We already introduced théispaces+, and?,, as well as the operatofis and...
We will denote bye(z) = ¢*7*/L /\/2L the complex orthonormal Fourier basis
in H,.

Definition 2.6 We define the scale of (fractional) Sobolev spatgsc H, with

a € R as the closure of the set B1.-periodic complex-valued trigonometric poly-
nomialsA = Y Aey, under the norm| A2 , = >, (1 + [k[)**|Ax[>. We also
define the spac@( as those real-valued functionssuch that.u € Hg. We
endow these spaces with the natural ndju,, o = ||¢cu|q,q-

We also denote by’ (respectively £,) the complex (respectively real) space
LP([—L, L]), endowed with the usual norm. We similarly define the sp&fesnd

CY of periodic continuous bounded functions. We will from time to time consider
ex as elements of(e, L%, or the complexifications of(& and L.
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Note that with this notation, we have

| e if &> —N,,
teTleCh = €_k—2N. if k< —N,.

In particular, one ha§r.ek||luo < |lexllq.o fOr everya > 0.

Remark 2.7 Although the norm inH{ is equivalent to the standarg-Sobolev
norm, the equivalence constants dependconin particular, the operators :
HE — HE andr, : HY — HS are bounded by with our choice of norms, which
would not be the case i was equipped with the standard norm instead.

Remark 2.8 Since the injection. : H. — H_, the inclusiorH} — 2, as well

as the projectionr. : 0 — C? are all bounded independently afthe inclusion

H. < €Y, which is given by the composition of these three operators, is also
bounded independently ef

Finally, we define, for some sufficiently small constant 0, the projectionsls .
anng/aby

H5/E(Z,ykeiknx/L) _ Z e/l and 5, =1-Ts.. (27)
kez |k|<5/e

3 Bounds on the Residual

Ouir first step in the proof of Theorem 1.1 is to control the residual (defined in
Definition 3.3 below), which measures how well a given approximation satisfies
the mild formulation of (SH). Before we give the definition of a mild solution,
we define the stochastic convolutions:_(t) andWa_(t), which are formally the
solutions to the linear equations:

We.(t) = VQ- / e dWe(t) (3.1a)
0

Wa.(t) = V@) / t e g, (t) . (3.1b)
0

Here W¢(t) and W, (t) denote standard cylindrical Wiener processes §pace-
time white noises). Note that, is real valued, whiléV;, is complex valued.

The covariance operat@y. is given by the convolution witlg. as mentioned
in (1.1). We will assume throughout this section the following.

Assumption 3.1 The kernelg. can be chosen in a way such that there exists a
constantC and a joint realisation oW/;_ andWa_ such that

E( sup [We.(t) - m.Wa. ()l ) < CE,
te[0,T] “

for everye € (0, 1).
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Remark 3.2 We will prove in Section 7 below that it is always possible to satisfy
Assumption 3.1 provided satisfies some weak regularity and decay conditions.

With these notations, a mild solution, seg.[DPZ92, p. 182], of the rescaled
equation (SH) is a process with continuous paths such that:

t
u(t) = e*=u(0) + / eELe (Du(r) — uP(r))dr + We(t) (3.2)
0
almost surely. We also consider mild solutioh®f (GL)
t
A(t) = ™ A(0) + / eUMB(A(T) — 3| AP A(T)) dr + Wa.(t) . (3.3)
0

This motivates the following definition:

Definition 3.3 Let ¢ be anH,-valued process. TheesidualRes()) of ¢ is the
process given by

t
Res@)(t) = —(t) +e“=4p(0) + /0 E () =3 (7)) dT + Wi (1), (3.4)

whereW,_(t) is as in (3.1a).

It measures how well the procegsapproximates a mild solution of (SH Let
us now introduce the concept of admissible initial condition. Since we are dealing
with a family of equations parametrised b (0, 1), we actually consider a family
of initial conditions. We emphasise on thalependence here, but we will always
consider it as implicit in the sequel.

Definition 3.4 A family of random variablesi® with values inH, (or equivalently
a family p© of probability measures o) is calledadmissibleif there exists a
decompositiomd® = W + A7, a constanC), and a family of constantsC; } ;>1
such that

1. Af € H, almost surely an&|| A] || , < C, for everyq > 1,
2. the W are centred Gaussian random variables such that

Okt
[E{er, W§) (e, W5)| < COTW : (3.5)

forall k,¢ € Z, (6iy = 1 for kK = ¢ and0 otherwise)

and such that these bounds are independent Affamily of random variables®
with values inH,, is called admissible if.u° is admissible.

Remark 3.5 The definition above is consistent with the definitionmfin the
sense that ifd° is admissible, them. A¢ is also admissible.
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Remark 3.6 Note that (3.5) implies that the covariance operatdigfcommutes
with the Laplacian, so that/s = > kez Ciérer, wherec;, < C/(1 + |k[) and the
&, are independent normal random variables with the restrictionéthat= &.

This implies by Lemma A.1 thé&‘lHI/V(ﬂPé’g < C for everyp > 1, as|le||p~ < C

and Lip(ex) < Clk|.

We have the following result.

Theorem 3.7 (Residual) Let Assumption 3.1 be satisfied. Then, for eyeey 1,
Ty > 0, & > 0, and admissible initial conditio(0), there is a constant’,, , > 0
such that the mild solutiod of (GL) with initial conditionA(0) satisfies

E( sup [Rest A)Ilky ) < Crpet ™. (3.6)
t€[0,T0] w

For the proof of the theorem we need two technical lemmas. The first one provides
us with estimates on the operator norm for the difference between the semigroup
of the original equation and that of the amplitude equation.

Lemma 3.8 Let H; be defined as
Hy = e Lot — e Bt 3.7)
Then for allae > 0 there exists a constait > 0 such that
_oatl 1/2
”Ht||£(7-[a77-{g) < (Cet™ 2 and ||HtH£(H,£,Cg) < (Ce . (38)
Proof. The operatoi{; acts ore;, € H, as
Htek = )\k(t) Te€k o (39)
where the\,(t)'s are given by

() = ce—t<1+e—2(1—i—§2(k—Ng)2>2) B Ce—t<1+4(kfﬂ_ E)2>’ (3.10)

with some constant bounded byi. By Taylor expansion arountd = 0, we easily
derive for some constantsandC' the bound

C forall k € Z,
< .
ARl = { Cte(1 + [k])Pe—ct0+ED  for [k < N, (3.11)
Letnowh = >, ., hrer € Ho. We write
HchHu,a < ”HtHzS/shHu,a + HHt g/shHu,a

for 0 > 0 sufficiently small so thai/e < V.. It follows furthermore from standard
analytic semigroup theory thaf, is bounded byC't—(@+1)/2 as an operator from
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H, ! into H2. Since the operatdiy,_ : Ha — H_ ! is bounded byCs, it follows

that one has indee, 115 _hl|y,. < Cet=TD/2|h||,. The term||HIls/chllu.q
is in turn bounded by

| Hillsjehl|f o < CP Y7 (14 [K[)0T20 e D y 2
|k|<d/e
< Ot—o1g2 Z (t1 + ‘k‘)2)3+ae—ct(l+\k\)2‘hk‘Q
|k|<d/e
<tz

from which the first bound follows. To show the second bound, take} ", hyey,
in H.. Now a crude estimate shows

|\ (t)]?
|Hiblley < C Y Il Ihil < C\ >0 PHAEE (3.12)
keZ keZ
It follows from (3.11) that
M@/ + [k[?) < Cmin{e?, 1/(1+ [k?)} (3.13)

sothat) , ‘fﬁ?ﬂj < Ce by treating separately the cade < ¢! and the case

|k| > et O

The second technical lemma bounds the difference between the linear part of the
original equation and that of the amplitude equation, applied to an admissible initial
condition. The idea is that, for an initial condition which admits the decompaosition
A =Wy + Ay, one can use thE ! -regularity to control the term involving; and
Gaussianity to control the term involvirid,.

Lemma 3.9 Let A be admissible in the sense of Definition 3.4 anddgbe defined
by (3.7). Then for every, > 0 x > 0 andp > 1 there exist constants > 0 such
that

IE( sup HHtAHgO) < Ceb*, (3.14)

te€[0,70] “

Proof. Since A is admissible, it can be written a6 = W, + A; with the same
notations as in Definition 3.4. The bound éhA; is an immediate consequence
of Lemma 3.8 above, so we only consider the term involvirig We write W, =
> rez Ciérer asin Remark 3.6, so that by (3.9)

HWo = Atk meen
kez

with \; asin (3.10). We use now Lemma A.1 with doméin= [— L, L] x [0, Tp]
and
Je(@, 1) = G Ak(t) (meer)(@) -
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From (3.13), we derivé fi ||l < C'min{e,1/(1 + |k|)}. Furthermore, it is easy
to see by a crude estimate on Lipj that Lip(fy) < Ce=*(1 + |k[)* for some
constantC, so that the required bound follows. Note that any bound onjkjp(
which is polynomial ire~! and || is sufficient. |

Proof of Theorem 3.7We start be reformulating the residual in a more convenient
way. We add and subtragf e~ %= (.3 4| A|?)(r) dr to obtain

Resfr-A)(t) = — (7w A)(t) + etle (- A)(0) + W, (t)
t
v 5 / D (5. A)(r) — (m-A) () dr
0

t
_ H,AQ0) + /0 Hy_ o (7eA(r) — (A()P)dr

t
+ [ (3 AR A — (A
+We () — 7 Wa(t),
where the operatofl; is defined in (3.7). We estimate each term in the above

expression separately, starting with the one involving the initial conditions. Since
we have assumed thdi{0) is admissible, Lemma 3.9 applies and we obtain

E sup [|HAQ)|% < Cpet ™.
te[0,7T7] “
Furthermore, Assumption 3.1 ensures thiét_(t) — 7.Wa_(t) satisfies the re-
guested bound.
We now use Lemma 3.8 for sonae € (%, 1) together with the embedding of
H< in CY to deduce that:

H /0 "H. (ﬁaA(T) _ (A(T))i‘)dT(

t
,<C [ ez dr sup 4G,
ce 0 0<7<t “
t _atl 3
<Ce | (t—7)" 2 dr sup [|A(T)|]{s
0 0<r<t @
< Ce sup [[AM)fs -
0<r<t e

Thus with the a—priori estimate on the solution of the amplitude equation from
Proposition A.5

t
E sup H/ Ht_T((er 1)eA(r) — (A(T))3)dr
te[0, 71" J0

p

p
e < Cpel .
Let us turn to the remaining term. We have (writigy, = e27N=/1)

| P (3, AP AY) — (me A = / e (A ey, )dr
0 0
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t
—/ ﬂae(th)AE (A(T)SéQNE)dT
0

t
+ / H,_, (A(T)gégNs)dT.
0
=: I1(t) + L2(?).

Let us consider first>(t). We use Lemma 3.8, together with tagriori estimate
on A from Proposition A.5 to obtain:

E sup |||k < Cpe
te[0,T] “

Now we turn to/;(t). By Theorem A.7, since we have assumed that the initial
conditions are admissible, we know théft) is concentrated in Fourier space:

E sup ||, A@®)|5, < Ce2 ™"
te[0,7o] @

Consequently we hava® = (H(;/EA)3 + Z, where

E sup [|Z|5 < Ce:™" and E sup || A®)|% < C. (3.15)
t€[0,70] @ t€[0,To] @

Furthermore, we know thaHQ/sA)?)eQNg has non-vanishing Fourier coefficients
only for wavenumbers betwe@iV, — 36/ and2 N, — 3§ /e. By choosing) < 2/3,
sayd = 1/3, we thus guarantee the existence of constahésdc independent of
e such that

HetAf(Ha/sA)g@NEHcg < 05716765_%”(Hé/EA)SHCQ :

Hence,

H/t meelt=TA: ((H(;/EA(T))36%>CZT
0

t
<c / e 2 T A [0 dr
0 a

ca

< Ce sup 5 A®)Z0 - (3.16)
t€[0,70] @
Since furthermoré r_et~: | £(co,coy < C independently of, we obtain:

¢ 2irNex
| / meel =% (115 A(r) e T ) dr
0

, <C sup |15, A@®)lg -

w te[O,To] “
(3.17)

Combining (3.16), (3.17), and (3.15), we obtain

E sup ||1;()[% < Cpet.
te[0,T] “

Putting all the above estimates together we obtain (3.6) of Theorem 3.7. O
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4 Main Approximation Result

This section is devoted to the proof of the following approximation theorem.

Theorem 4.1 (Approximation) Fix Ty > 0, p > 1, andx > 0. There exist joint
realisations of the Wiener processB& and IV, from (3.1) such that, for every
admissible initial conditior4(0), there exist€” > 0 such that

E( sup [lu(t) — mA@)k ) < Cet (4.)
t€[0,To] w

whereA is the solution of (3.3) with initial conditior(0) andw is the solution of
(3.2) with initial conditionu(0) = 7. A(0).

Before we turn to the proof of this result, we make a few preliminary calcula-
tions. LetA(t) andu(t) be as in the statement of Theorem 4.1 and define

R(t) = u(t) — mA(t) .

From (3.2) and Definition 3.3 we easily derive

t
R(t) = /0 LD R(T) — 3R(T) (. A(7))? — 3R(7)*m.A(r) — R(7)’]dr

+ Resfr.A)(1).

Define
o(t) = Res@)(t), ¢(t) = mA(¢)
and
r(t) = R(t) — o(t). (4.2)

Thenr(t) satisfies the equation

O = Ler +0(r +¢) =300+ )0 =30+ 9)"¢ = +¢)°, r(0) = 0. (4.3)
With these notations, we have the followiagpriori estimates in..?.

Lemma 4.2 Under the assumptions of Theorem 4.1 there exists a cornStand
such that
E( sup [r@}) < cet, (4.4)
t€[0,70]

for r(t) defined in (4.2).
Proof. As before, we are usinfy- ||,, to denote the norm ift/,, and we denote by

(-, ) the corresponding scalar product. Taking the scalar product of (4.3)with
we obtain

d -
ol = 20Ler, )+ 20(r + ¢, m) = 6((r + @)%, 7)u
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- 6<(T + @)2¢a 7a>’u, - 2<(T + 90)37 T>u
=h+L+L+1+1I5.

Since L. + 1 is by definition a non-positive selfadjoint operator, we hdye<
—2||7||>. Moreover, the Cauchy-Schwarz inequality yields:

L < Clrllz +Cliel -

It follows from the Young and Cauchy-Schwarz inequalities that
L
<=3 [ r6dat Ol + Cllely ol

and

L L L
Iy = —3/ 3 de — 3/ r2p de — 3/ rp2e) d
L

—L —L —
1
< gllrllzy + Clliéy + Cllelizg 1 -
Finally, expandind’s yields
7
Is < —<llrlizg + Clielle -
Putting all these bounds together, we obtain:
A2 < Clrlz + ¢ (1 + 1l ) lellZ (1 + el )

We apply now a comparison argument to deduge)(= 0 by definition)

t
I < € [ e (1 ully ) Il (14 el i 45)
From Theorem 3.7 we derive with(t) = Resf. A)(t)
E sup [p(0)llfy < Cpe? " (4.6)
te[0,70] “

Furthermore, tha priori estimate oM (t), Proposition A.5, together with the prop-
erties ofr, yield for ¢ (t) = w. A(t)

E sup [[¢(t)llgo < Cp - (4.7)
t€[0,70] “
Combining (4.5) with (4.6) and (4.7) we obtain (4.4) of Lemma 4.2. O

To proceed further we first establish two interpolation inequalities. We start by
defining the selfadjoint operator

A=01—-). . (4.8)

By Definition 2.6, thel{{-norm is given byi|r|, o = (r, A%r). Furthermore, the
following interpolation lemma holds.
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Lemma 4.3 For p > 2 there is a constant’ > 0 such that

3-3, b+ -4, 3+
lull g, < Cllullyy ™ and llully < Cllully, ™ fulli™™

for everyu € H2.

Proof. The proof of the lemma follows from the standard interpolation inequalities,
the definition of.4 and the properties of the operaters 7. (cf. (2.3) and (2.4)).
O

Itis also straightforward to verify that. and.4 have a joint basis of eigenfunctions
consisting of sinfkxz /L) and costkz/L). By comparing the eigenvalues it is easy
to verify that

(—Lou,u)y > (Au,u)y  and thus ||ullus < [[(—£2)2ull, . (4.9)

Furthermore
(—Leu, Au)y > || Aullz = [Jullf 5 - (4.10)

We now turn to the

Proof of Theorem 4.1We take the scalar product of (4.3) with- to obtain

i1 = (Ler Ar)y + 0(r + @, Ar)y = 3((r + @), Ar)y

=3((r+ @), Ar)u = {(r + ¢)°, Ar)y
=L+ L+Is+14+1I5.

1
—0
5 alks

We then use (4.10) to gt < —HTHZ,Q- Moreover, using Cauchy-Schwarz and
Young, one has the bounds

1
L < Clrlz + Cliglls + glirle.

and )
I < Clrllallelié + Cliellalvle + gHrHi,z :

In order to bound the termy we use Lemma 4.3 with = 4:

s 1
2 o+ Clllg Il + Clle 2 ol -

Finally, we use Lemma 4.3 with = 6 to bound/s:

1
I ==
1=l

Is < dllrlliz + Cslleligo + Collrlla’ -
Putting everything together we obtain:
AullrlZ < ClIrl2 (I lidy + el lirl2 + N2 irlid + )5

+ ol (1+ leliZg 1012y + 1618 + el )

Estimate (4.1) follows now from (4.11), together with Lemma 4.2 andhthgori
bounds onp and¢ from (4.7) and (4.6). O
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5 Attractivity

This section provides attractivity results for the SPDE. We consider the rescaled
equation (SH), and we prove that regardless of the initial conditigfi) we start

with, we will end up for sufficiently large > 0 with an admissibleu(t), thus
giving admissible initial conditions for the amplitude equation. The main result of
this section is contained in the following theorem.

Theorem 5.1 (Attractivity) For all (random) initial conditionsu(0) such that
u(0) € H, almost surely and everyy > 0, the mild solutionu(t) of (SH) is ad-
missible in the sense of Definition 3.4. Furthermore, givdi a 0 the family of
constants{C, } ,~0 Which appears in the definition of admissibility is independent
of the initial conditions and the timefor ¢ > Tj.

Remark 5.2 In [Cer99] and [GMO1] uniform bounds on the solutions after tran-
sient times were obtained that are independent of the initial condition. However,
the statements given in these papers do not cover the situation presented here.

The rest of this section is devoted to the proof of this theorem. First we will
prove standard a-priori estimates iff-spaces that rely on the strong nonlinear
stability of the equation. Then we will provide regularisation results usingthe
norm which allow us to get to thé? space and we end with the admissibility of
the solution. Note that the solutianwill never be inH!, therefore we have to
consider suitable transformations.

Let u(t) denote the mild solution of (Sh i.e. a solution of (3.2). Denote as
in (3.1a) byWW,_ the stochastic convolution for the operaity and definev :=
u — W¢_. Thenv satisfies the equation

o = Lov+ v+ Wg.) — (v +We.)3, (5.1)

with the same initial conditions as. We start by obtaining a? estimate on
. Before we do this let us discuss some estimates for the stochastic convolution.
Using first Proposition 7.1 we obtain

E sup [We.()% <CE sup [Wa.(B)]% + CeP/>" .
t€[0,To] u t€[0,To] o

Hence, using the modification of Lemma A.3 or Proposition A.5 with 0,

E sup [[W.. ()% <C. (5.2)
t€[0,70] w

Lemma 5.3 Let u(t) be the solution of (3.2). Fix arbitrar{fy > 0. Then there
exists a constan® > 0 independent ofi(0) such that

SUpE[u(r)[l, < O
t>To
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Assume further thdk||u(0) |5 < co. Then, giveriy > 0 there exists a constaiit
such that

supE[lu®)[|}, <C, and E sup [u@)|f; < C.

t>0 t€[0,To]

Proof. We multiply (5.1) withv, integrate over{ L, L], use the dissipativity of .
in H,, together with the fact that

— (v, (04 We ) < =1 = 8)||vll, + 8]0l + CsIWe. Iy
for everyéd > 0, which we choose to be sufficiently small, to obtain
aulol2 < =Crllol + Ca (1 + IWe. iy ),

for some positive constants; andCs. A comparison theorem for ODE yields for
t € [0, To]

1
o2 < maxs C(L+ sup |[|[We.||);
@ {oar sup IWe. ) oo )
1
<1+ sup Wl + ). 53)
t€[0,T5] ot

Note furthermore, that
Oulloll2 < —clol2 + € (1+ IWe. Iy ) -

Again a comparison argument for ODEs yields for 8gy> 0
t
@)% < (@)% + C / I (14 [We () ds (5.4)
Ty “

The claims of the lemma follow now easily from (5.3) and (5.4), the fact that
u = v+ W,_, and the estimates on the stochastic convolution from (5.2). O

Lemmab5.4 Fix§ > 0, p > 0, andTy > 0. Then there is a constait such that
for all mild the solutions: of (SH) (i.e. (3.2)) WithEHu(O)H?}’ < 4 the following
estimate holds
SUpEu(t)|[% < C . (5.5)
t>To “
Proof. Define
w(t) == u(t) — e“=u(0) — W, =: u(t) — o(t)

Now w fulfils

Ow = Low + o(w + @) — (w+ )3, w(0)=0 (5.6)
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ConsiderA defined in (4.8) and multiply (5.6) withlw, integrate over{L, L],
use Lemma 4.3 with = 6 as well ag|v||,,1 < ||v,2 to obtain:

aulwl2y < ~Cullwl s + Ca(Jlwl2 + w0 + llel2 + el )

A comparison theorem for ODE now yields:
t
w @l < Co [ Ol + e, E)
0

Using (4.9) and Lemma 4.3 we deduce thaf|;s < Cll(— L) 2wl 3 |ul 2,
Hence,
le"“=ug|fe < Ct 2 uo] - (5.8)

Taking the£P/2-norm in probability space, we deduce from (5.7) using (5.8) and
the embedding oft’. into C? from Remark 2.8

2/p
QWww%Q <C<y+wmﬁmﬁm®2m+gm@mv‘wzm>

vo [Fretre@ROFP e 69)
0

for all t > 0, where we used th&2-bounds from Lemma 5.3. Note that this is the
reason, why we need thg-th moment of the initial conditiom(0). On the other
hand, the bound on the stochastic convolution together with standard properties of
analytic semigroups enable us to bour(d), for ¢ sufficiently large:

le®llcg < Clle = u@lua + I1We.lleg < Ot u(O)lu + [We. llcs-

Estimate (5.5) now follows from the above estimate, Lemma 5.3, the definition of
w and estimate (5.9). O

Proof of Theorem 5.1First, Lemma 5.3 together with Lemma 5.4 establishes the
existence of a tim@y > 0 such thaf®||u(t)||7, < C forallt > Tp. Furthermore,
combining (5.7) and (5.9) we |mmed|ately get that

E|lw(®)lly, < C

Thus, under the assumptions of the previous lemma and using the properties of
the stochastic convolutiol/;_(t) we conclude that for every > 0 u(t) can be
decomposed as

u(t) = w(t) + Z(t) + e“=u(0) ,

wherew(t) € H} andZ(t) is a centred Gaussian procesgjh Moreovere“=u(0)
isinH! for anyt > 0, too. We use now the decomposition

w(Ty + 7) = 0(r) + Z(7) + €™~ u(Typ) ,
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where we considei(t) as the solution starting at sufficiently lar@e > 0 with ini-
tial conditionsu(T}). ForT > 0 sufficiently large the processZ(r) := 1. Wp_(7)
(in law) is clearly as in2. of Definition 3.4. For 1. definéVy(7) := w(r) +
e™“=u(Tp). We obtain from Lemma 5.4 and the analog of (5.9)dathat

E|[Wo(D)|If, < Cp+ C77P2E|[u(Th)|5 < C .

Hence, the decompositiar(t) = Wy(t — Ty) + Z(t — Tp) shows the admissibility
of u(t), where the constants are independent Bf27j. O

6 Approximation of the Invariant Measure

First, we denote bfP; the semigroup (acting on finite Borel measures) associated
to (SH.) and byQ; the semigroup associated to (GL). Note tb}tdepends om,
but it is for instance independentofor L € ewN.

Recall also that the Wasserstein distajicgy; between two measures on some
metric spaceM with metricd is given by

i = pallw = _jnf [ min1,d(f.9)} (. do).
reC(p1,12) J A2
whereC(u1, u2) denotes the set of all measures.bt? with j-th marginalu,. See
for example [Rac91] for detailed properties of this distance.
In the sequel, we will use the notatiin; — 2| w,, for the Wasserstein distance
corresponding to thePknormd(f, g) = || f — ¢gl|.» for p € [1, oc]. The main result
on the invariant measures is

Theorem 6.1 Let 1, . be an invariant measure for (SHand letv, . be the (uni-
gue) invariant measure for (GL). Then, for every> 0, there exist€ > 0 such
that one has

||M*,s - W:V*,enw,oo < 051/2_5

for everye € (0, 1].
Note thatv, . is actually independent af providedL € ewN. As usual, the
measurer;v denotes the distribution of. under the measure

Proof. Fix x > 0 for the whole proof. From the triangle inequality and the defini-

tion of an invariant measure, we obtain
”N*,s - W:”*ﬁHWDO < Hptaﬂ*,e - W:Q§L:U*,EHW7OO 6.1)
+ 172 Qi vne — TE Qi i bnelWioo - '

Concerning the first term, it follows from Theorem 4.1 that the family of mea-
suresy, . is admissible and that

1P§ ftse — T2 Q5 ekt w0 < CEM27N
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In order to bound the second term in (6.1), we use the exponential convergence
of Q7 1 towards a unique invariant measure. This is a well-known result for SPDEs
driven by space-time white noise (af.g. Theorem 2.4 of [GMO01]), but we need
the explicit dependence of the constants on the initial measures. The precise bound
required for our proof is given in Lemma 6.2 below.

By Lemma 6.2, there exists> 0 such that

1
Hgiﬂ*,o - bezll*,sHW,oo < EHL:M*,E - V*,s||W,2 ,

so that the boundedness it? lof 7. implies

1 —
||N*78 — W:V*75||Woo < ﬁHL:H*ﬁ — V*78||W2 4 651/2 K

Since the B-norm is bounded bﬂ times the B°-norm, this in turn is smaller
than

1 1 -
gllice = mvecllwos + S liEmevne = viclwz + Ce!2

It follows from standard energy-type estimates that
E/ 1Al v o(dA) < Cla
Ha

for everya < 1/2, where the constants, can be chosen independently=ofThis
estimate is a straightforward extension of the results presented in Section A.2.

One therefore hag m v, . — vic|lwa < Cue'/?7*. Plugging these bounds
back into (6.1) shows that

|W,<>o + Cﬂgl/Q_H )

* 1 *
||M*,s - 7T5V*,s||W,oo < 5“#*,5 — TeVse
and therefore concludes the proof of Theorem 6.1. O
Besides the approximation result, the main ingredient for the above reasoning is:

Lemma 6.2 For everyd > 0, there exists a timé&' = 7'(§) independent of such
that

1971 = Qrvllwoo < dllp = vllwa -

Proof. It follows from the Bismut-Elworthy-Li formula combined with standard
priori bounds onQ; [EL94, DPZ96, Cer99] that

1951 — Qivllzy < C(L -+l —vilwez

with a constantC independent of.
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On the other hand, [GMO01] there exist constafitand~ such that
19— Qivllry < Ce ju—vlrv . (6.2)

These constants may in principle dependoBy retracing the constructive argu-
ment of Theorem 5.5 in [Hai02] with the binding function

Gz,y) = —Cly — 2)(1 + ||y — =] /?),

one can however easily show that the constants in (6.2) can be chosen indepen-
dently ofe. O

7 Approximation of the Stochastic Convolution

In this section, we give® bounds in time and in space on the difference between
the stochastic convolutions of the original equation and of the amplitude equation.
The main result of this section is

Theorem 7.1 Let W,_ and Wa_ be defined as in (3.1), and let the correlation
functionsg. with Fourier coefficientg; satisfy Assumptions 7.3 and 7.4 below. For
everyT > 0, k > 0, andp > 1 there exists a constaiit and a joint realisation of
W andWa, such that

E( sup [[We.(t) — WEWAE(t)HgO) < Ceh*
t€[0,T] u

for everye € (0, 1).

We will actually prove a more general result, see Proposition 7.8 below, which
has Theorem 7.1 as an immediate corollary. The general result allows the linear
operatorL. to be essentially an arbitrary real differential operator instead of re-
stricting it to the operator-1 — e ~2(1 +£292)2. Our main technical tool is a series
expansion of the stochastic convolution together with Lemma A.1, which will be
proved in Section A.1 below. The expansion with respect to space is performed
using Fourier series. For the expansion in time we do not use Karhunen-Loeve
expansion directly, since we do not necessarily need an orthonormal basis to apply
Lemma A.1. Our choice of an appropriate basis will simplify the coefficients in
the series expansion significantly (cf. Lemma A.2). We start by introducing the
assumptions required for the differential opera@gio,,).

Assumption 7.2 Let P denote an even functioR : R — R satisfying the follow-
ing properties:

P1 P is three times continuously differentiable.

P2 P(¢) > 0forall ¢ € RandP(0) > 0.

P3 The set{¢| P(¢) = 0} is finite and will be denoted by+(i, ..., +(n}-
Note that{; # 0.
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P4 P"((;) >0forj=1,...,m.
P5 There exists? > 0 such thatP(¢) > |¢|? for all ¢ with [¢| > R.

Note that choosing® even ensures thdt(i0,) is a real operator, but our results
also hold for non-ever®, up to trivial notational complications.

We now make precise the assumptions on the noise that drives our equation.
Consider an even real-valued distributipauch that its Fourier transform satisfies
G > 0. Then,q(z)do(t) is the correlation function for a real distribution-valued
Gaussian procesgz, t) with =, t € R?, i.e. a process such th&i (s, z)¢(t, y) =
o(t — s)g(z — y). We restrict ourself to correlation functions in the following class:

Assumption 7.3 The distributiong is such thaiy € L*>°(R) andq is globally Lip-
schitz continuous.

At this point, a small technical difficulty arises from the fact that we want to replace
¢ by a2L/e-periodic translation invariant noise proce&sswhich is close tc in

the bulk of this interval. Denote by the2L /e-periodic correlation function o

and byg; its Fourier coefficientd,e.

-k

L/e e

qp = / ¢@)e " T dx . (7.1)
—L/e

One natural choice is to take fgf the periodic continuation of the restriction @f

to [-L/e, L/<]. This does however not guarantee thats again positive definite.

Another natural choice is to definé via its Fourier coefficients by

qp = / q(x) e T g , (7.2)
which corresponds to taking (z) = > ., q(x +2nL/c). This guarantees that
is automatically positive definite, but it requires some summability. diote that
for noise with bounded correlation lengthe( support ofq uniformly bounded)
(7.1) and (7.2) coincide far > 0 sufficiently small.

We choose not to restrict ourselves to one or the other choice, but to impose
only a rate of convergence of the coefficiegfdowardsg(kme/L):

Assumption 7.4 Let ¢ be as in Assumption 7.3. Suppose there is a non-negative
approximating sequengg that satisfies

kSl#\lp V@ — Vilkne/L)| < Ce,
€Ng
for all sufficiently smalk > 0.

Example 7.5 A simple example of noise fulfilling Assumptions 7.3 and 7.4 is given
by space-time white noise. Hejé:) = 1 and the natural approximating sequence
is q;, = 1 forall k.
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A more general class of examples is given by the following lemma.

Lemma 7.6 Let ¢ be positive definite and such that— (1 + |z|?) ¢(z) is in L',
Defineg;, either by (7.2) or by (7.1) (in the latter case, we assume additionally that
the resultingg® are positive definite). Then Assumptions 7.3 and 7.4 are satisfied.

Proof. This follows from elementary properties of Fourier transforms. O

Let us now turn to the stochastic convolution, which is the solution to the linear
equation
dWe (x,t) = LW (z,t)dt + / Qe dW (2, 1) , (7.3)
where
L. =—1—¢e2P(cid,) ,

W is a standard cylindrical Wiener process oif[=L, L]), and the covariance
operatorQ). is given by the following definition.

Definition 7.7 Let Assumption 7.4 be true. Defiré as the function such thaf
are its Fourier coefficients (cf. (7.1)). Then defiQe as the rescaled convolution

with ¢¢, i.e.
n@=1 " s (2Y)av.

Let us expandV._ into a complex Fourier series. Denote as usuakbpy) =
evm=/L /\/2L the complex orthonormal Fourier basis enlf, L]. Define further-

more P¢ by
1 ke
P = — ( : )+1

Since). commutes withZ,, we can write the stochastic convolution as

We o) = V@ [ eIame.s

=Y Ve / exp(—P2(k) (¢ — 5)) duwi(s)

k=—00

where the{wy } ez are complex standard Wiener processes that are independent,
except for the relatiomw_;, = wy. We approximatéV._(x,t) by expanding” in a
Taylor series up to order two around its zeroes. We thus define the approximating
polynomialsP; by

P// N2 L

With this notation, the approximatiob(z, t) is defined by

P(z, t)—2ReZ Vi) S et / exp(— P (k)(t — s)) diyj(s) . (7.4)

k=—o00
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where thew,, ;'s are complex i.i.d. complex standard Wiener processes. At this
point, let us discuss a rewriting @f which makes the link with the notations used

in the rest of this article. We decompoéc_%i into an integer part and a fractional
part, so we write it as

L L
SL gk, Gel-hdl, k=|TE]ez,

J
ET ET

As before k] denotes the nearest integer:tg- 0, with the convention tha%ﬂ =1.
Forz < 0, we define f] = —[—z]. Extend form > 1 the definition of the Hilbert
spaceH, = L*([—L, L],C™) and the definition of the projection

Te : Hog — Hy

m ik
A—2Red Aj@)e T ",
j=1

With this notation, we can writ@ as®(t) = 7. ®%(t), where thej-th component
of ¢ solves the equation

d®j(t) = A5 (t) dt + /4(G;) i (@) - (7.5)

Here, then;’s are independent complex-valued space-time white noises and the
Laplacian-type operatak; is given by

B P"(¢;) (. T\ 2
A== (0 + )

Now we can prove the following approximation result.

Proposition 7.8 Let Assumptions 7.2, 7.3 and 7.4 hold and consilemd W _
as defined in (7.3) and (7.5). Then for evéty> 0, x > 0 and everyp > 1, there
exists a constant’ and joint realisations of the noisé& andr; such that

IE( sup  sup |P(z,t) — Wga(l‘,t)|p) < CePl2r
ze[—L,L] t€[0,T]

Remark 7.9 This result can not be generalised to dimensions higher than one,
since the stochastic convolution of the Laplace operator with space-time white
noise is then not even ir’L It the zeros ofP are degeneratége. P behaves like

(k — Cj)M for somed € {2,3,...} then we would obtain an amplitude equation
with higher order differential operator, and we can proceed to higher dimension.
The other option would be to use fractional noise in space, which is more regular
that space-time white noise. Using the scaling invariance of fractional noise, we
would obtain fractional noise in the amplitude equation.
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Proof. It will be convenient for the remainder of the proof to distinguish between
the positive rootg; and the negative roots(; of P, so we defin€_; = —(;. We
start by writing® = 3 | (®0) 4+ (=) with

iﬂkj
. (O3 7 for j )
Oy = { Titet B forg=0 (7.6)
@?(z) e forj<O.

Forr > 0 sufficiently small andR as inP5, we decomposg into several regions:
kP ={kez| BT g <v), m= k= P UKD,
j=1
kem
{keZH R}, Ky=2Z\K>.
We suppose that > 0 is sufficiently small such that th{aKy)}j:iLmim are
disjoint and such that ¢ K. The splitting intoX? and K is mainly for techni-

cal reasons. We denote lﬁ;ff), II,, etc. the corresponding orthogonal projection
operators in E([—L, L]). We also define

ke
o —7;20):*13( Lﬂ>+1,
/!
U)—ip(@)”(——mﬂf 1 forj=d1,... %
Y k pon + orj==£1,...,£m

It is a straightforward calculation, using Taylor expansion and Assumption 7.2,
that there exist constantsand C' independent of and L such that one has the
following properties forj = +1,...,+m:

e — 49| < Cg‘k;—@i?’, ke KO (7.7a)
e

m)\>1+ 5| —%2, ke K9, (7.7b)

9| > ; , ke Ky\KY (7.7¢)

V| > ck?/L?, keKs. (7.7d)

In view of the series expansion of Lemma A.2, we also define

(J) B 1_( 1)n€ ’7(])T
Uk = (,yg))zTQ +m2n2

(7.8)

where the constardt depends only off’. We defines,, j in the same way With,gj)
replaced byy,. With these definitions at hand, we can use Lemma A.2 to write
oU) as

oU(t,z) = \/4(() Z S a0 eV (1)

k=—ocon€e”Z
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where we defined

e (2,1) = ep(@)(e Tt — e k"

)

and where the{gfj;)k : n € Z} are independent complex-valued Gaussian random
variables. Note tha&(_j) iz, t) = U) (T, 1), so that (7.6) implies the relation

5( k= 50) The proces$V._(t, ) can be expanded in a similar way as

We (t,z) = Z V qr, Z an,kfn,ken,k(wa t), (7.9)
k=—00 nez
with ‘
enk(@, 1) = en(@)(e T —e )
where{¢, , : n € Z,k € Z} are i.i.d standard complex-valued Gaussian random
variables, with the exception that,, _, = &, . Note that this implies thag o

is real-valued. In order to be able to compé¥e_ and®, we now specify how
we choose the random varlable,$,C to relate to the random varlableg) For

j = x1,...,£m we deflnef = gnk for all k € K(j). Note that this is

consistent with the relatloré J) k= .5 andé_,, . = &, x, and with the fact
thatK§ D = KIU). We will see Iatermthe proof that the deflnltlon{(ﬁfk fork &
K%j) does not really matter, so we choose them to be independent of all the other
variables, except for the relati@ﬁjj;)_k = & The the proof of the proposition
is split into several steps. First we bound the differencélﬂ)?j)@@) andH%j)Wgs.
Then we show that all remaining termis{ I1¥?)® and ( — 11I{") . are small.

Step 1 We first prove that foj = +1,...,+m

E sup sup [IVe0)(z,t) - TVW, (2, )P < CP/> (7.10)
z€[—L,L] t€[0,T]

We thus want to apply Lemma A.1 to

Itt,2) = > > &u(/iC)a Dy (@, 1) — /aianken iz, 1))

ke KD neZ

Define

(@, 1) = V/A(()aP%eD (@, 1) — /a7 an pen i@, 1),

Note first that Lip(,x) < C(1 + |k| + |n| + |yk[) and similarly for Lip¢r9)).
Therefore, the uniform bounds @hand g;, together with the definition of,, .,
imply that there exists a constafitsuch that Lip(;,, ) is bounded byC(|k| + 1)
forall k € K{ andn € N, where the constant only depends Bn Note that
the Lipschitz constant is taken with respectat@nd¢. Fork € K}j) we have
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|k| < C/e, and hence Lipf, ;) < Ce~'. Now Lemma A.1 implies (7.10) if we
can show that for every > 0 one has

ST el < Cret (7.11)

]{?EK%JI) nezZ

where theL®°-norm is again taken with respect tandx. To verify (7.11) we
estimate| fi.n | by

1 finlloo < VG = Vagllanellenklloo + [v/ACaD, 1€, — enllo

+ VAP, — anklllen o
= Il(nv k) + IQ(”? k) + I3(na k) ’

and we bound the three terms separately. First by assumjpiibp < C. Fur-
thermorega,, , < C/(1 + |n|) and||ex ||cc < C forall k K%” andn € N, and
analogous for the terms involving Again by assumption, /¢(k;) — \/@ < Ce
forall k Kl(j), so thatl;(n, k) is bounded by

Ce

L. k)| < .
|I1(n )‘_1—|—|n|

(7.12)

And hence)”, . [I1(n, k)[>~* < Ce'~*. For everyt > 0 and everyy’ > v > 0
e — e < Ctly —A'le .

Combining this with (7.7a) one hds"), — e, 4]l < Celk — 2| for k € K.
Using

D (@) <C D (A ) < O/l + W),

n=—oo n=—oo

we derive}">°  I»(n, k)*™" < Ce*~*. Which gives the claim. Concerning, a
straightforward estimate using (7.7a) shows that

¢ L
1+‘k—#

I3(n, k)| < Cla — a9 | = Ce

Using>=02 (o + [n))*2 < O/ (1 + ) we derived -2 I3(n, k)" <
%52—“, where we can use (7.7b). Combining all three estimates, bound (7.11)
follows now easily.

Step 2 We now prove that

E sup sup |H389(x, )P < CeP/277 (7.13)
z€[—L,L] te[0,T]
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and

E sup sup |HsWe_(x,t)P < CeP/>7% . (7.14)
z€[—L,L] t€[0,T]

Both bounds are obtained in the same way, so we only show how to prove (7.14).
Using the bound om;, (7.8) and (7.7d) for, ;, and the definition ot,, ;,, we
readily obtain the bounds

C .
@k an,kenklloo < EEaeE Lip(qgan kxenk) < Ck .

Now (7.14) follows immediately from Lemma A.1, noticing that

> (K +n) < k>, for|k| > 1ands > 1.
neZ

Furthermore K3 only contains elementslarger thanCe~!.

Step3 Forj = 0,...,m we denote byH(le) the projector associated to the set
K\ K%’). We show that

E sup sup [OQW. (z,t)P < CeP/?77,
z€[—L,L] te[0,T]

and in a completely similar way we derive

E sup sup [IFe0(,1)P < C=P/> .
z€[—L,L] te[0,T]

By (7.8) and (7.7c) we get

C

e 2+ |n|’ Lip(gj.an ken k) < Ce " .

lgkankenklloo <

The estimate follows then again from Lemma A.1, noticing thiat- Ky contains
less tharO(c~!) elements.

Summing up the estimates from all the previous steps concludes the proofa

Appendix A Technical Estimates

A.1 Series expansion for stochastic convolutions

This section provides technical results on series expansion and their regularity of
stochastic convolutions, which are necessary for the proofs.

Lemma A.1 Let {nx}res be i.i.d. standard Gaussian random variables (real or
complex) witht € I an arbitrary countable index set. Moreover lef;}rer C
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Wheo(@, C) where the domairG ¢ R? has sufficiently smooth boundary (e.g.
piecewiseC'!). Suppose there is somes (0, 2) such that

ST = |fellie <oo and S5 => | fell}Lip(fr)’ < o0
kel kel

Define f(¢) = > e mfx(¢). Then, with probability onef(¢) converges abso-
lutely for any¢ € G and, for anyp > 0, there is a constant depending only pn
0, andG such that

EJ| /|20y < C(ST + S5) .

Proof. From the assumptions we immediately derive th@af) and f(z) — f(y) are
a centred Gaussian for amyy € GG. Moreover, the corresponding series converge
absolutely. Using that they, are i.i.d., we obtain

Elf@) = @) =D | ful@) — fi)

kel

< 3 ming2| fi 3 Lip(fil — %)

kel
<23 IfellZ20ip(fi) e — yl°
kel
=283|z —y|°, (A1)

where we used that mfia, bz} < a'~%/209/2|2|% for anya, b > 0. Furthermore,
Elf@)* < llfell7e = ST (A.2)
kel

Considerp > 1 sufficiently large andv > 0 sufficiently small. Using Sobolev
embedding (cf. [Ada75, Theorem 7.57]) and the definition of the norm of the
fractional Sobolev space in [Ada75, Theorem 7.48] we derivexfor- d that

EHfHIé’U(G) < CEHfH];VavP(G)
< C’E/ |f(x)_f(y)|pd:t7dy—i—CIE‘./ |f(x)Pdx
G

G |z —yldter

G
(E|f($)—f(y)|2)p/2 - 2)12Y/2 4
SC/G/G ddy+C/G(E|f()l)”d,

|z — y|d+ar

where we used thaf(x) and f(x) — f(y) are Gaussian. Note that the constants
depend om. Using (A.1) and (A.2), we immediately see that

E|[[fl[Eoy < CST +CS5

provideda € (0,9/2). Note finally that we needed > d/« to have the Sobolev
embedding available. The casepk d/« follows easily using Wlder inequality.
O
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LemmaA.2 Lety € R and let

a(t) = /Ot e 79 dun(s)

with w a standard complex Wiener process, Eeu(t)w(s) = 0 and Ew(t)w(s) =
min{t, s}. Then, fort € [0,T7], a(t) has the following representation:

a(t) = Y annGale T =), (A3)

neZ

where theu,, -, are given by the Fourier-coefficients %e*ﬂt*s‘ on[—-T,T]
> _ 1= ()re”
YT Y4272 4 r2p2

with some constant’ depending only on the tim&. and the{¢,},cz are i.i.d.
complex normal random variables, ilE2 = 0 andE|¢,|? = 1.

Proof. The stationary Ornstein—Uhlenbeck process
t
at) = / e~ 7E9) dup(s)
—00
has the correlation function:

6—7|t—5‘

2y

Ea(t)a(s) =

Expandinge—/?l in Fourier series on{ T, T'] we obtain

d(t) — Z an;yéfnehmt/T ’

nezZ

for i.i.d. normal complex-valued Gaussian random varialglesThe claim now
follows from the identitya(t) = a(t) — e~*a(0). O

A.2 A-priori estimate for the amplitude equation

This section summarises and proves technical a-priori estimates for an equation of
the type (GL). Most of them are obtained by standard methods and the proofs will
be omitted. The main non-trivial result is Theorem A.7 about the concentration in
Fourier space. We consider the equation

NA = a2 A+ iB0, A+ A — c|APA + on (A.4)

with periodic boundary conditions on-[., L], where o and ¢ are positive and
0,7, 8 € R andn denotes space—time white noise.
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Equation (GL) is of the form (A.4) witlh = 4, 6 = —80., v = v — 44, and
c = 3 with |0.| < J7. Obviously, the constants and~ are c-dependent, but
uniformly bounded ire > 0, which is a straightforward modification of the result
presented.

Further, we denote byV the complex cylindrical Wiener process such that
oW = n. Define the stochastic convolution

¢ =0Wap2-1 and B=A-o. (A.5)
Then
0B = a@%B +iB0:(B+ ) +vB+ (y+1)p —c|B + @\Q(B + ). (A.6)

Of course this equation is only formal, asis not differentiable. But in what
follows, we can always use smooth approximationg @b justify the arguments.
The mild formulation of (A.6) is

B(t) = "% A(0) + i3 / t 0,e°%2 =) (B 1 ©)(s)ds (A7)
0

t
+ / %20 (YB(s) + (7 + 1pls) — el B + 9B + ¢)(s) ) ds
0

We will use the following Lemma, which fails to be true in higher dimensions for
complex space-time white noige

Lemma A.3 For any choice ofy > 1 andT > 0 there are constants such that

sup E||90(t)||go <C and E sup HQD(t)”go <C.
t€[0,To] @ t€[0,T0] “

The results of the previous lemma are obviously also true if we replac€the
norm by anLP-norm. The constant then depends alsoponThe proof of this
lemma is standard seeg.[BHO04] or [BMPS01, Theorem 5.1.]. Now we easily
prove the following result via standard energy-type estimated fery.

Proposition A.4 For any choice op > 1, ¢ > 1, andT; > 0 there are constants
such that

SUpE[ AW, < C,

t>Ty @
with constant independent of(0). Moreover, for any choice afy > 0, p > 1,
g > 1, andTy > 0 there are constants such thali|iﬁ(0)||ng < ¢p then

sup E[A®)|%, <C and E sup [|[A@®)%, <C.
t€[0,7o] a te[0,To] a

Now we can easily verify the following result using the mild formulation of solu-
tions.
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Proposition A.5 For any choice oty > 0, ¢ > 1, andTy > 0 there are constants
such that ifE[| A(0)[|2 < co then

E sup [JA@®)llg, < C.
t€[0,To]

Note that it is sufficient for Proposition A.5 to assume tHéd) is admissible.

Remark A.6 We need the condition on ttBgth moment of the initial conditions
to ensure thalf sup o 7, | BIBI*()[|%, < C

In the following we establish that a solutioh of (A.4) with admissible initial
conditions, in the sense of Definition 3.4, stays concentrated in Fourier space in
theC'-topology for all times.

Theorem A.7 Let A(t) be the solution of (A.4) and assume that the initial con-
ditions are admissible. Then for evepy> 1 and T, > 0 there exist positive
constants:, Cy with x < 1 such that

E sup HH(;/sA(t)Hp < CePl27n
te[0,T¢

whereHC/ was defined in (2.7).

Proof. We start by establishing the fact that admissible initial conditions are con-
centrated in Fourier space. According to Definition 3.4 the initial conditions admit
the decompositiom (0) = Wy + A;. Consider first the Gaussian p&rfy. We can

use the series expansion of Remark 3.6 together with Lemma A.1 to verify

E||IL5,. Wollgy < Cpe?’* ™"

Let now{A }rez denote the Fourier coefficients dfi. We use the fact that is
bounded ir{} to deduce

e Auly < (3 14H) < 30 K12 3 (kP 4L

k> 2 K> kez
< Ce' "l Az,

From the above estimates we deduce that
E|IT5,. A0)|3g < CeP/>7r .
Let us consider (A.7). First using the boundedness of the semigroup

E||TI5. % AQ) 2, < CE|IT AQ)[[5y < CP/*7".
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Using the factorisation method (seey.[BMPSO01, Theorem 5.1.]) we easily get
for the stochastic convolutiop defined in (A.5) the bound

|| sup 15,60 < o kg/g k) <ot (ag)

To proceed, we use the stability of the semigroup and the embeddtrg ioto C°
for ¢ € (%, 1). Using this, it is elementary to show that

IS e'% hley < Ce™@& ¢/ ], ,

for everyh € H,. Hence

|

Moreover, forh = > hiey by a crude estimate

t
< Y[ e s

Co |k|>0/

t
Hg/a/o e(t_s)agh(s) ds

t
< C’/ e=Cse™? gma/2g sup [|A(s)||a
co 0 s€[0,T7]

< Ce*C sup [|h(s)]a -
s€[0,7T]

t
HH(C;/E&C/ e(t*S)aaﬂ%h(s) ds
0

t
< C’/ e~ O 75~ 1+0/2g5 sup 17(3)]a
0 s€[0,t]

< Ce*¢ sup ||Ah(s)]|a -
s€[0,t]

Using (A.7), Proposition A.5, and (A.8) and choosing % sufficiently small é.g.
¢ = % + g), it is now straightforward to verify the assertion first fBrand hence
for A. 0
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