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1 Introduction

One of the main tools of modern stochastic analysis is Malliavin calculus. In
a nutshell, this is a theory providing a way of differentiating random variables
defined on a Gaussian probability space (typically Wiener space) with respect to
the underlying noise. This allows to develop an “analysis on Wiener space”, an
infinite-dimensional generalisation of the usual analytical concepts we are familiar
with on R=. (Fourier analysis, Sobolev spaces, etc.)

The main goal of this course is to develop this theory with the proof of Hörman-
der’s theorem inmind. This was actually the original motivation for the development
of the theory and states the following. Consider a stochastic differential equation
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on R= given by

3- 9 (C) = + 9 ,0(- (C)) 3C +
<∑
8=1
+ 9 ,8 (- (C)) ◦ 3,8 (C)

= + 9 ,0(-) 3C +
1
2

<∑
8=1

3∑
:=1

+:,8 (-)m:+ 9 ,8 (-) 3C +
<∑
8=1
+ 9 ,8 (-) 3,8 (C) ,

where the + 9 ,: are smooth functions, the ,8 are i.i.d. Wiener processes, ◦3,8

denotes Stratonovich integration, and 3,8 denotes Itô integration. We also write
this in the shorthand notation

3-C = +0(-C) 3C +
<∑
8=1
+8 (-C) ◦ 3,8 (C) , (1.1)

where the +8 are smooth vector fields on R= with all derivatives bounded. One
might then ask under what conditions it is the case that the law of -C has a density
with respect to Lebesgue measure for C > 0. One clear obstruction would be the
existence of a (possibly time-dependent) submanifold of R= of strictly smaller
dimension (say : < =) which is invariant for the solution, at least locally. Indeed,
=-dimensional Lebesgue measure does not charge any such submanifold, thus
ruling out that transition probabilities are absolutely continuous with respect to it.

If such a submanifold exists, call it say M ⊂ R × R=, then it must be the case
that the vector fields mC − +0 and {+8}<8=1 are all tangent to M. This implies in
particular that all Lie brackets between the + 9 ’s (including 9 = 0) are tangent to
M, so that the vector space spanned by them is of dimension strictly less than
= + 1. Since the vector field mC −+0 is the only one spanning the “time” direction,
we conclude that if such a submanifold exists, then the dimension of the vector
space V(G) spanned by {+8 (G)}<8=1 as well as all the Lie brackets between the + 9 ’s
evaluated at G, is strictly less than = for some values of G.

This suggests the following definition. Define V0 = {+8}<8=1 and then set
recursively

V=+1 = V= ∪ {[+8, +] : + ∈ V=, 8 ≥ 0} , V=
⋃
=≥0

V= ,

as well as V(G) = span{+ (G) : + ∈ V}.

Definition 1.1 Given a collection of vector fields as above, we say that it satisfies
the parabolic Hörmander condition if dim V(G) = = for every G ∈ R=.

Conversely, Frobenius’s theorem (see for example [Law77]) is a deep theorem in
Riemannian geometry which can be interpreted as stating that if dim V(G) = : < =
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for all G in some open set Oof R=, then R×O can be foliated into : +1-dimensional
submanifolds with the property that mC − +0 and {+8}<8=1 are all tangent to this
foliation. This discussion points towards the following theorem.

Theorem 1.2 (Hörmander) Consider (1.1), as well as the vector spaces V(G) ⊂
R= constructed as above. If the parabolic Hörmander condition is satisfied, then
the transition probabilities for (1.1) have smooth densities with respect to Lebesgue
measure.

The original proof of this result goes back to [Hör67] and relied on purely
analytical techniques. However, since it has a clear probabilistic interpretation,
a more “pathwise” proof of Theorem 1.2 was sought for quite some time. The
breakthrough came with Malliavin’s seminal work [Mal78], where he laid the
foundations of what is now known as the “Malliavin calculus”, a differential
calculus in Wiener space, and used it to give a probabilistic proof of Hörmander’s
theorem. This new approach proved to be extremely successful and soon a
number of authors studied variants and simplifications of the original proof
[Bis81b, Bis81a, KS84, KS85, KS87, Nor86]. Even now, more than three decades
after Malliavin’s original work, his techniques prove to be sufficiently flexible to
obtain related results for a number of extensions of the original problem, including
for example SDEs with jumps [Tak02, IK06, Cas09, Tak10], infinite-dimensional
systems [Oco88, BT05, MP06, HM06, HM11], and SDEs driven by Gaussian
processes other than Brownian motion [BH07, CF10, HP11, CHLT15].

1.1 Original references
The material for these lecture notes was taken mostly from the monographs
[Nua06, Mal97], as well as from the note [Hai11]. Additional references to some
of the original literature can be found at the end.

2 White noise and Wiener chaos

Let� = !2(R+,R<) (but for the purpose ofmuch of this section,� could be any real
separable Hilbert space), then white noise is a linear isometry, : � → !2(Ω,P)
for some probability space (Ω,P), such that each , (ℎ) is a real-valued centred
Gaussian random variable. In other words, for all 5 , 6 ∈ �, one has

E, (ℎ) = 0 , E, (ℎ), (6) = 〈ℎ, 6〉 ,

and each, (ℎ) is Gaussian. Such a construct can easily be shown to exist.
Indeed, it suffices to take a sequence {b=}=≥0 of i.i.d. normal random variables

and an orthonormal basis {4=}=≥0 of �. For ℎ =
∑
=≥0 ℎ=4= ∈ �, it then

suffices to set, (ℎ) = ∑
=≥0 ℎ=b=, with the convergence taking place in !2(Ω,P).
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Conversely, given a white noise, it can always be recast in this form (modulo
possible modifications on sets of measure 0) by setting b= = , (4=).

A white noise determines an <-dimensional Wiener process, which we call
again, , in the following way. Write 1(8)[0,C) for the element of � given by

(1(8)[0,C)) 9 (B) =
{

1 if B ∈ [0, C) and 9 = 8,
0 otherwise, (2.1)

and set,8 (C) = , (1(8)[0,C)). It is then immediate to check that one has indeed

E,8 (B), 9 (C) = X8 9 (B ∧ C) ,

so that this is a standard Wiener process. For arbitrary ℎ ∈ �, one then has

, (ℎ) =
<∑
8=1

∫ ∞

0
ℎ8 (B) 3,8 (B) , (2.2)

with the right hand side being given by the usual Wiener–Itô integral.
Let now �= denote the =th Hermite polynomial. One way of defining these is

to set �0 = 1 and then recursively by imposing that

�′= (G) = =�=−1(G) (2.3)

and that, for = ≥ 1, E�= (-) = 0 for a normal Gaussian random variable - with
variance 1. This determines the �= uniquely, since the first condition determines �=
up to a constant, with the second condition determining the value of this constant
uniquely. The first few Hermite polynomials are given by

�1(G) = G , �2(G) = G2 − 1 , �3(G) = G3 − 3G .

Remark 2.1 Beware that the definition given here differs from the one given in
[Nua06] by a factor =!, but coincides with the one given in most other parts of
the mathematical literature, for example in [Mal97]. In the physical literature,
they tend to be defined in the same way, but with - of variance 1/2, so that they
are orthogonal with respect to the measure with density exp(−G2) rather than
exp(−G2/2).

There is an analogy between expansions in Hermite polynomials and expansion
in Fourier series. In this analogy, the factor =! plays the same role as the factor 2c
that appears in Fourier analysis. Just like there, one can shift it around to simplify
certain expressions, but one can never quite get rid of it.
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An alternative characterisation of the Hermite polynomials is given by

�= (G) = exp
(
− �

2

2

)
G= , (2.4)

where � represents differentiation with respect to the variable G. (Yes, this is the
inverse heat flow appearing here!) To show that this is the case, and since it is
obvious that ��= = =�=−1, it suffices to verify that E�= (-) = 0 for = ≥ 1 and �=
as in (2.4). Since the Fourier transform of G= is 2=X(=) for some constant 2= and
since exp(−G2/2) is a fixed point for the Fourier transform, one has for = > 0∫

4−
G2
2 4−

�2
2 G= 3G = 2=

∫
4−

:2
2 4

:2
2 X(=) (:) 3: = 2=

∫
X(=) (:) 3: = 0 ,

as required.
A different recursive relation for the �=’s is given by

�=+1(G) = G�= (G) − �′= (G) , = ≥ 0 . (2.5)

To show that (2.5) holds, it suffices to note that

[ 5 (�), G] = 5 ′(�) ,

so that indeed

�=+1(G) = exp
(
− �

2

2

)
G G= = G�= (G) +

[
exp

(
− �

2

2

)
, G

]
G=

= G�= (G) − � exp
(
− �

2

2

)
G= = G�= (G) − �′= (G) .

Combining both recursive characterisations of �=, we obtain for =, < ≥ 0 the
identity∫

�= (G)�< (G)4−G
2/2 3G =

1
= + 1

∫
�′=+1(G)�< (G)4

−G2/2 3G

=
1

= + 1

∫
�=+1(G)

(
G�< (G) − �′< (G)

)
4−G

2/2 3G

=
1

= + 1

∫
�=+1(G)�<+14−G

2/2 3G .

Combining this with the fact that E�= (-) = 0 for = ≥ 1 and E�2
0 (-) = 1, we

immediately obtain the identity

E�= (-)�< (-) = =!X=,< .
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Fix now an orthonormal basis {48}8∈N of �. For every multiindex : , which we
view as a function : : N→ N such that all but finitely many values vanish, we then
define a random variable Φ: by

Φ:
def
=

∏
8∈N

�:8 (, (48)) . (2.6)

It follows immediately from the above that

EΦ:Φℓ = :!X:,ℓ , :! =
∏
8

:8! . (2.7)

Write now �⊗B= for the subspace of �⊗= consisting of symmetric tensors. There is
a natural projection Π : �⊗= → �⊗B= given as follows. For any permutation f of
{1, . . . , =} write Πf : �⊗= → �⊗= for the linear map given by

Πf
(
ℎ1 ⊗ . . . ⊗ ℎ=

)
= ℎf(1) ⊗ . . . ⊗ ℎf(=) .

We then set Π = 1
=!

∑
f Πf, where the sum runs over all permutations.

Writing |: | = ∑
8 :8, we set 4: = Π

⊗
8 4
⊗:8
8

, which is an element of �⊗B |: |.
Note that the vectors 4: are not orthonormal, but that instead one has

〈4: , 4ℓ〉 =
:!
|: |!X:,ℓ .

Comparing this to (2.7), we conclude that the maps

�= : 4: ↦→
1
√
=!
Φ: , |: | = = , (2.8)

yield, for every = ≥ 0, an isometry between �⊗B= and some closed subspace H=

of !2(Ω,P). This space is called the =th homogeneous Wiener chaos after the
terminology of the original article [Wie38] by Norbert Wiener where a construction
similar to this was first introduced, but with quite a different motivation. As a
matter of fact, Wiener’s construction was based on the usual monomials instead of
Hermite polynomials and, as a consequence, the analogues of the maps �= in his
context were not isometries. The first construction equivalent to the one presented
here was given almost two decades later by Irving Segal [Seg56], motivated in part
by constructive quantum field theory.

We now show that the isomorphisms �= are canonical, i.e. they do not depend
on the choice of basis {48}. For this, it suffices to show that for any ℎ ∈ � with
‖ℎ‖ = 1 one has �= (ℎ⊗=) = �= (, (ℎ))/

√
=!. The main ingredient for this is the

following lemma.
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Lemma 2.2 Let G, H ∈ R and 0, 1 with 02 + 12 = 1. Then, one has the identity

�= (0G + 1H) =
=∑
:=0

(
=

:

)
0:1=−:�: (G)�=−: (H) .

Proof. As a consequence of (2.4) we have

�= (0G + 1H) = exp
(
−
�2
G

202

)
(0G + 1H)= = exp

(
−
�2
G

2

)
exp

(
−
12�2

G

202

)
(0G + 1H)= .

Noting that � (�G/0) (0G + 1H)= = � (�H/1) (0G + 1H)=, we conclude that

�= (0G + 1H) = exp
(
−
�2
G

2

)
exp

(
−
�2
H

2

)
(0G + 1H)= .

Applying the binomial theorem to (0G + 1H)= concludes the proof.

Applying this lemma repeatedly and taking limits, we have

Corollary 2.3 Let 0 ∈ ℓ2 with
∑
02
8
= 1 and let {G8}8∈N be such that

∑
8 08G8

converges. Then, one has the identity

�=

(∑
8∈N

08G8

)
=

∑
|: |==

=!
:!
0:

∏
8∈N

�:8 (G8) ,

where 0: def
=

∏
8 0

:8
8
. In particular, whenever ℎ ∈ � with ‖ℎ‖ = 1, one has

�= (ℎ⊗=) = �= (, (ℎ))/
√
=!, independently of the choice of basis used in the

definition of �=.

It turns out that, as long as Ω contains no other source of randomness than
generated by the white noise, , then the spaces H= span all of !2(Ω,P). More
precisely, denote byFthef-algebra generated by, , namely the smallestf-algebra
such that the random variables , (ℎ) are F-measurable for every ℎ ∈ �. Then,
one has

Theorem 2.4 In the above context, one has

!2(Ω,F,P) =
⊕
=≥0

H= .

Proof. Denote by�# ⊂ � the subspace generated by {4: }:≤# , byF# thef-algebra
generated by {, (ℎ) : ℎ ∈ �# }, and assume that one has

!2(Ω,F# ,P) =
⊕
=≥0

H
(#)
= , (2.9)



White noise and Wiener chaos 8

where H(#)= ⊂ H= is the image of �⊗B=
#

under �=. Let now - ∈ !2(Ω,F,P) and set
-# = E(- |F# ). By Doob’s martingale convergence theorem, one has -# → -

in !2, thus showing by (2.9) that
⊕

=≥0 H= is dense in !2(Ω,F,P) as claimed.
To show (2.9), it only remains to show that if - ∈ !2(Ω,F# ,P) satisfies

E-. = 0 for every . ∈ H
(#)
= and every = ≥ 0, then - = 0. We can write

- (l) = 5 (, (41), . . . ,, (4# )) (almost surely) for some function 5 : R# → R that
is square integrable with respect to the standard Gaussian measure `# on R# . By
assumption, one then has

∫
5 (G) %(G) `# (3G) = 0 for every polynomial %.

Note now that the truncated Taylor expansion ) (=)
:

of 5:
def
= (G ↦→ 48:G) satisfies

the bound
|) (=)
:
(G) | =

��� ∑
|< |≤=

(8:G)<
<!

��� ≤ 4 |:G | ,
uniformly over =, and ) (=)

:
converges of course pointwise to 5: . Since `# has

subexponential tails it integrates 4 |:G | for every : ∈ R# , and it follows from
Lebesgue’s dominated convergence theorem that lim=→∞ )

(=)
:

= 5: in !2(`# ).
Since

∫
5 (G)) (=)

:
(G) `# (3G) = 0 for every : ∈ R# and every # > 0, we

conclude that one must have
∫
5 (G) 48:G `# (3G) = 0, whence the claim follows.

Remark 2.5 The fact that ` integrates exponentials is crucial here and not just an
artefact of our proof. If this condition is dropped, then there are counterexamples
to the claim that polynomials are dense in !2(`).

Let us now show what a typical element of H= looks like. We have already seen
that H0 only contains constants and H1 contains precisely all random variables
of the form (2.2). Write Δ= ⊂ R=+ for the cone consisting of points B with
0 < B1 < · · · < B=. We then have

Lemma 2.6 Let � = !2(R+,R<). For = ≥ 1, the space H= consists of all random
variables of the form

�̃= ( ℎ̃) =
∑
91··· 9=

∫ ∞

0

∫ B=

0
· · ·

∫ B2

0
ℎ̃ 91,..., 9= (B1, . . . , B=) 3, 91 (B1) · · · 3, 9= (B=) ,

with ℎ̃ ∈ !2(Δ=,R<
=).

Proof. We identify !2(Δ=,R<
=) with a subspace of �⊗= and define the symmetri-

sation Π : �⊗= → �⊗= as before. The map
√
=!Π is then an isometry between

!2(Δ=,R<
=) and �⊗B=. Setting ℎ =

√
=!Πℎ̃, we claim that �̃= ( ℎ̃) = �= (ℎ), from

which the lemma then follows.
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Since linear combinations of such elements are dense in !2(Δ=), it suffices to
hake ℎ̃ of the form

ℎ̃ 91,..., 9= (B) = 6
(1)
91
(B1) · · · 6(=)9= (B=) ,

where the functions 6(8) ∈ � satisfy ‖6(8) ‖ = 1 and have the property that
sup supp 6(8) < inf supp 6(8) for 8 < 9 . It then follows from the properties of the
supports and standard properties of Itô integration that

�̃= ( ℎ̃) =
=∏
8=1

, (6(8)) .

Since the functions 6(8) have disjoint supports and are therefore all orthogonal in
�, we can view them as the first = elements of an orthonormal basis of �. The
claim now follows immediately from the definition (2.8) of �=.

3 The Malliavin derivative and its adjoint

One of the goals ofMalliavin calculus is tomake precise the notion of “differentiation
with respect to white noise”. Let us formally write b8 (C) = 3,8

3C
, which actually

makes sense as a random distribution. Then, any random variable - measurable
with respect to the filtration generated by the, (ℎ)’s can be viewed as a function
of the b8’s.

At the intuitive level, one would like to introduce operators D (8)C which take the
derivative of a random variable with respect to b8 (C). What would natural properties
of such operators be? On the one hand, one would certainly like to have

D (8)C , (ℎ) = ℎ8 (C) , (3.1)

since, at least formally, one has

, (ℎ) =
<∑
8=1

∫ ∞

0
ℎ8 (C)b8 (C) 3C .

On the other hand, one would like these operators to satisfy the chain rule, since
otherwise they could hardly claim to be “derivatives”:

D (8)C � (-1, . . . , -=) =
=∑
:=1

m:� (-1, . . . , -=)D (8)C -: . (3.2)

Finally, when viewed as a function of C (and of the index 8), the right hand side of
(3.1) belongs to �, and this property is preserved by the chain rule. It is therefore
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natural to ask for an operator D that takes as an argument a sufficiently “nice”
random variable and returns an �-valued random variable, such that D, (ℎ) = ℎ
and such that (3.2) holds.

Let now W⊂ !2(Ω,P) denote the set of all random variables - such that there
exists # ≥ 0, a function � : R# → R which, together with its derivatives, grows at
most polynomially at infinity, and elements ℎ8 ∈ � such that

- = � (, (ℎ1), . . . ,, (ℎ# )) . (3.3)

Given such a random variable, we define an �-valued random variable D- by

D- =

#∑
:=1

m:� (, (ℎ1), . . . ,, (ℎ# )) ℎ: . (3.4)

One can show that D- is well-defined, i.e. does not depend on the choice of
representation (3.3). Indeed, for ℎ ∈ �, one can characterise 〈ℎ,D-〉 as the limit
in probability, as Y → 0, of Y−1(gYℎ- − -), where the translation operator g is
given by (

gℎ-
)
(,) = -

(
, +

∫ ·

0
ℎ(B) 3B

)
.

This in turn does not depend on the representative of - in !2 since g∗
Yℎ
P is equivalent

to P for every ℎ ∈ � as a consequence of the Cameron-Martin theorem, see for
example [Bog98]. Since W∩H= is dense in H= for every =, we conclude that W
is dense in !2(Ω,P), so that D is a densely defined unbounded linear operator on
!2(Ω,P).

One very important tool in Malliavin calculus is the following integration by
parts formula.

Proposition 3.1 For every - ∈ Wand ℎ ∈ �, one has the identity

E〈D-, ℎ〉 = E
(
-, (ℎ)

)
.

Proof. By Grahm-Schmidt, we can assume that - is of the form (3.3) with the ℎ8
orthonormal. One then has

E〈D-, ℎ〉 =
#∑
:=1

Em:� (, (ℎ1), . . . ,, (ℎ# )) 〈ℎ: , ℎ〉

=

#∑
:=1

〈ℎ: , ℎ〉
(2c)#/2

∫
R#
4−|G |

2/2m:� (G1, . . . G: ) 3G

=

#∑
:=1

〈ℎ: , ℎ〉
(2c)#/2

∫
R#
4−|G |

2/2� (G1, . . . G: )G: 3G
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=

#∑
:=1

E
(
-, (ℎ: )〈ℎ: , ℎ〉

)
= E

(
-, (ℎ)

)
.

To obtain the last identity, we used the fact that ℎ =
∑∞
:=1〈ℎ: , ℎ〉ℎ: for an

orthonormal basis {ℎ: }, together with the fact that , (ℎ: ) is of mean 0 and
independent of - for every : > # .

Corollary 3.2 For every -,. ∈ Wand every ℎ ∈ �, one has

E
(
. 〈D-, ℎ〉

)
= E

(
-., (ℎ) − - 〈D., ℎ〉

)
. (3.5)

Proof. Note that -. ∈ Wand that Leibniz’s rule holds.

As a consequence of the integration by parts formula (3.5), we can show that
the operator D is closable, which guarantees that it is “well-behaved” from a
functional-analytic point of view.

Proposition 3.3 The operator D is closable. In other words if, for some sequence
-= ∈ W, one has -= → 0 in !2(Ω,P) and D-= → . in !2(Ω,P, �), then . = 0.

Proof. Let -= be as in the statement of the proposition and let / ∈ W, so that in
particular both / and D/ have moments of all orders. It then immediately follows
from (3.5) that on has

E
(
/ 〈., ℎ〉

)
= lim
=→∞

E
(
-=/, (ℎ) − -=〈D/, ℎ〉

)
= 0 .

If . was non-vanishing, we could find ℎ such that the real-valued random variable
〈., ℎ〉 is not identically 0. Since W is dense in !2, this would entail the existence
of some / ∈ W such that E

(
/ 〈., ℎ〉

)
≠ 0, yielding a contradiction.

We henceforth denote by W1,2 the domain of the closure of D (namely those
random variables - such that there exists -= ∈ Wwith -= → - in !2 and such
that D-= converges to some limit D-) and we do not distinguish between D and
its closure. We also follow [Nua06] in denoting the adjoint of D by X. One can
of course apply the Malliavin differentiation operator repeatedly, thus yielding an
unbounded closed operator D : from !2(Ω,P) to !2(Ω,P, �⊗: ). We denote the
domain of this operator by W:,2.

Actually, a similar proof shows that powers of D are closable as unbounded
operators from !? (Ω,P) to !? (Ω,P, �⊗: ) for every ? ≥ 1. We denote the
domain of these operators by W:,?. Furthermore, for any Hilbert space  , we
denote by W:,? ( ) the domain of D : viewed as an operator from !? (Ω,P,  ) to
!? (Ω,P, �⊗:⊗ ). We call a random variable belonging to W:,? for every :, ? ≥ 1
“Malliavin smooth” and we writeS=

⋂
:,? W:,? as well asS( ) = ⋂

:,? W:,? ( ).
The Malliavin smooth random variables play a role analogous to that of Schwartz
test functions in finite-dimensional analysis.
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Remark 3.4 As an immediate consequence of Hölder’s inequality and the Leibniz
rule, S is an algebra.

Let us now try to get some feeling for the domain of X. Recall that, by definition
of the adjoint, the domain of X is given by those elements D ∈ !2(Ω,P, �) such
that there exists . ∈ !2(Ω,P) satisfying the identity

E〈D,D-〉 = E(.-) ,

for every - ∈ W. One then writes . = XD. Interestingly, it turns out that the
operator X is an extension of Itô integration! It is therefore also called the Skorokhod
integration operator and, instead of just writing XD, one often writes instead∫ ∞

0
D(C) X, (C) .

We now proceed to showing that it is indeed the case that, if D is a square integrable
stochastic process that is adapted to the filtration generated by the increments of the
underlying Wiener process, , then D belongs to the domain of X and XD coincides
with the usual Itô integral of D against, .

To formulate this more precisely, denote by FC the f-algebra generated by the
random variables, (ℎ) with supp ℎ ⊂ [0, C]. Consider then the set of elementary
adapted processes, which consist of all processes of the form

D =

#∑
:=1

.
(8)
:

1(8)[B: ,C: ) , (3.6)

for some # ≥ 1, some times B: , C: with 0 ≤ B: < C: < ∞, and some random
variables . (8)

:
∈ !2(Ω,FB: ,P). Summation over 8 is also implied. We denote

by !2
0 (Ω,P, �) ⊂ !2(Ω,P, �) the closure of this set. Recall then that, for an

elementary adapted process of the type (3.6), its Itô integral is given by∫ ∞

0
D(C) 3, (C) def

=

#∑
:=1

.
(8)
:

(
,8 (C: ) −,8 (B: )

)
=

#∑
:=1

.
(8)
:
,

(
1(8)[B: ,C: )

)
. (3.7)

Using Itô’s isometry, this can then be extended to all of !2
0.

Theorem 3.5 The space !2
0 (Ω,P, �) is included in the domain of X and, on it, X

coincides with the Itô integration operator.

Proof. Let D be an elementary adapted process of the form (3.6) with each . (8)
:

in
W. For - ∈ Wone then has, as a consequence of (3.5),

E
(
〈D,D-〉

)
=

#∑
:=1

E
(
.
(8)
:
〈1(8)[B: ,C: ) ,D-〉

)
(3.8)
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=

#∑
:=1

E
(
.
(8)
:
- , (1(8)[B: ,C: )) − - 〈D.

(8)
:
, 1(8)[B: ,C: )〉

)
.

At this stage, we note that since D. (8)
:

is FB: -measurable by assumption, it has
a representation of the type (3.3) with each ℎ 9 satisfying supp ℎ 9 ∈ [0, B: ]. In
particular, one has 〈ℎ 9 , 1(8)[B: ,C: )〉 = 0 so that, by (3.4), one has 〈D. (8)

:
, 1(8)[B: ,C: )〉 = 0.

Combining this with the above identity and (3.7), we conclude that

E
(
〈D,D-〉

)
= E

(
-

∫ ∞

0
D(C) 3, (C)

)
.

Taking limits on both sides of this identity, we conclude that it holds for every
D ∈ !2

0, thus completing the proof.

One also has the following extension of Itô’s isometry.

Theorem 3.6 The space W1,2(�) is included in the domain of X and, on it, the
identity

E|XD |2 = E
∫ ∞

0
|D(C) |2 3C + E

∫ ∞

0

∫ ∞

0
D (8)B D 9 (C)D ( 9)C D8 (B) 3B 3C

holds, with summation over repeated indices implied.

Proof. Consider similarly to before D to be a process of the form D =
∑#
8=1.

(8)ℎ(8)

with . (8) ∈ Wand ℎ(8) ∈ �, but this time without any adaptedness condition on
the . ’s. It then follows from the same calculation as (3.8) that

XD = . (8), (ℎ(8)) − 〈D. (8) , ℎ(8)〉 , (3.9)

with summation over 8 implied, so that

DℎXD = Dℎ.
(8), (ℎ(8))+. (8) 〈ℎ, ℎ(8)〉−〈D2. (8) , ℎ⊗ℎ(8)〉 = XDℎD+〈ℎ, D〉 . (3.10)

(This is nothing but an instance of the “canonical commutation relations” appearing
in quantum mechanics!) Integrating by parts, applying (3.10), and then integrating
by parts again it follows that

E|XD |2 = E〈D,DXD〉 = E〈D, D〉 + E. (8)X(Dℎ (8).
( 9)ℎ( 9))

= E〈D, D〉 + EDℎ ( 9).
(8)Dℎ (8).

( 9) ,

with summation over 8 and 9 implied. At this point, we note that

Dℎ ( 9).
(8) Dℎ (8).

( 9) =

∫ ∞

0

∫ ∞

0

(
D (:)B . (8)

)
ℎ
( 9)
:
(B)

(
D (ℓ)C . ( 9)

)
ℎ
(8)
ℓ
(C) 3B 3C
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=

∫ ∞

0

∫ ∞

0

(
D (:)B . (8) ℎ(8)

ℓ
(C)

) (
D (ℓ)C . ( 9)ℎ( 9)

:
(B)

)
3B 3C

=

∫ ∞

0

∫ ∞

0
D (:)B Dℓ (C)D (ℓ)C D: (B) 3B 3C .

It remains to use the density of the class of processes we considered to conclude
the proof.

In a similar way, we can give a very nice characterisation of the “Ornstein-
Uhlenbeck operator” XD :

Proposition 3.7 The spaces H= are invariant for Δ = XD and one has Δ- = =-
for every - ∈ H=.

Proof. Fix an orthonormal basis {4: } of �. Then, by definition, the random
variablesΦ: as in (2.6) with |: | = = are dense in H=. Recalling that D�: (, (ℎ)) =
:�:−1(, (ℎ))ℎ, one has

DΦ: =
∑
8

:8Φ:−X848 ,

where X8 is given by X8 ( 9) = X8, 9 . We now recall that, as in (3.8), one has the
identity

X(-ℎ) = - , (ℎ) − 〈D-, ℎ〉 ,
for every - ∈ Wand ℎ ∈ �, so that

ΔΦ: =
∑
8

:8Φ:−X8, (48) −
∑
8, 9

:8 (: 9 − X8, 9 )Φ:−X8−X 9 〈48, 4 9 〉

=
∑
8

:8
(
Φ:−X8, (48) − (:8 − 1)Φ:−2X8

)
.

Recall now that, by (2.5), one has

�:8−1(G)G − (:8 − 1)�:8−2(G) = �:8 (G) ,

so that one does indeed obtain ΔΦ: =
∑
8 :8Φ: = =Φ: as claimed.

An important remark to keep in mind is that while X is an extension of Itô
integration it is not the only such extension, and not even the only “reasonable” one.
Actually, one may argue that it is not a “reasonable” extension of Itô’s integral at
all since, for a generic random variable - , one has in general∫ ∞

0
- D(C) X, (C) ≠ -

∫ ∞

0
D(C) X, (C) .
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Also, if one considers a one-parameter family of stochastic processes 0 ↦→ D(0, ·)
and sets � (0) =

∫ ∞
0 D(0, C) X, (C), then in general one has

� (-) ≠
∫ ∞

0
D(-, C) X, (C) ,

if - is a random variable.
It will be useful in the sequel to be able to have a formula for the Malliavin

derivative of a random variable that is already given as a stochastic integral.
Consider a random variable - of the type

- =

∫ ∞

0
D(C) 3, (C) , (3.11)

with D ∈ !2
0 is sufficiently “nice”. At a formal level, one would then expect to have

the identity

D (8)B - = D8 (B) +
∫ ∞

0
D (8)B D(C) 3, (C) . (3.12)

This is indeed the case, as the following proposition shows.

Proposition 3.8 Let D ∈ !2
0 (Ω,P, �) be such that D8 (C) ∈ W1,2 for almost every C

and
∫ ∞

0 E‖DD8 (C)‖2 3C < ∞. Then (3.12) holds.

Proof. Take D of the form (3.6) with each . (8)
:

in W, so that - =
∑
.
(8)
:
,

(
1(8)[B: ,C: )

)
.

It then follows from the chain rule that

D- =

#∑
:=1

(
.
(8)
:

1(8)[B: ,C: ) +D. (8)
:
,

(
1(8)[B: ,C: )

) )
= D +

∫ ∞

0
DD(C) 3, (C) ,

and the claim follows from a simple approximation argument, combined with the
fact that D is closed.

Finally, we will use the important fact that the divergence operator X maps S
into S. This is a consequence of the following result.

Proposition 3.9 For every ? ≥ 2 there exist constants : and � such that, for every
separable Hilbert space  and every D ∈ S(� ⊗  ), one has the bound

E|XD |? ≤ �
∑

0≤ℓ≤:

(
E|DℓD |2?

)1/2
.
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Proof. For ? ∈ [1, 2], the bound follows immediately from Theorem 3.6 and
Jensen’s inequality. Take now ? > 2. Using the definition of X combined with the
chain rule for D , Proposition 3.8, and Young’s inequality, we obtain the bound

E|XD |? = (? − 1)E
(
|XD |?−2〈D,DXD〉

)
= (? − 1)E|XD |?−2 (|D |2 + 〈D, XDD〉)

≤ 1
2
E|XD |? + 2E

(
|D |? + |D |?/2 |XDD |?/2

)
,

for some constant 2. We now use Hölder’s inequality which yields

E
(
|D |?/2 |XDD |?/2

)
≤

(
E|D |2?

)1/4 (
E|XDD |2?/3

)3/4
.

Combining this with the above, we conclude that there exists a constant � such that

E|XD |? ≤ �
(
E|DℓD |2?

)1/2 +
(
E|XDD |2?/3

)3/2
.

The proof is concluded by a simple inductive argument.

Corollary 3.10 The operator X maps S(� ⊗  ) into S( ).

Proof. In order to estimate E|D :XD |?, it suffices to first apply Proposition 3.8 :
times and then Proposition 3.9.

Remark 3.11 The above argument is very far from being sharp. Actually, it is
possible to show that X maps W:,? into W:−1,? for every ? ≥ 2 and every : ≥ 1.
This however requires a much more delicate argument.

4 Smooth densities

In this section, we give sufficient conditions for the law of a random variable - to
have a smooth density with respect to Lebesgue measure. The main ingredient for
this is the following simple lemma.

Lemma 4.1 Let - be anR=-valued random variable for which there exist constants
�: such that |E� (:)� (-) | ≤ �: ‖�‖∞ for every � ∈ C∞0 and : ≥ 1. Then the law
of - has a smooth density with respect to Lebesgue measure.

Proof. Denoting by ` the law of - , our assumption can be rewritten as���∫
R=
� (:)� (G) `(3G)

��� ≤ �: ‖�‖∞ . (4.1)

Let now B > =/2 so that ‖�‖∞ . ‖�‖�B by Sobolev embedding. By duality and
the density of C∞0 in �B, the assumption then implies that every distributional
derivative of ` belongs to the Sobolev space �−B so that, as a distribution, `
belongs to �ℓ for every ℓ ∈ R. The result then follows from the fact that �ℓ ⊂ C:

as soon as ℓ > : + =
2 .
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Remark 4.2 If the bound (4.1) only holds for : = 1, then it is still the case that the
law of - has a density with respect to Lebesgue measure.

The idea now is to make repeated use of the integration by parts formula (3.5)
in order to control the expectation of � (:)� (-). Consider first the case : = 1 and
write 〈D, ��〉 for the directional derivative of � in the direction D ∈ R=. Ideally,
for every 8 ∈ {1, . . . , =}, we would like to find an �-valued random variable .8
independent of � such that

m8� (-) = 〈D� (-), .8〉 , (4.2)

where the second scalar product is taken in �, so that one has

Em8� (-) = E
(
� (-) X.8

)
.

If .8 can be chosen in such a way that E|X.8 | < ∞ for every 8, then the bound
(4.1) for : = 1 follows. Since D� (-) = ∑

9 m9� (-)D- 9 as a consequence of the
chain rule, a random variable .8 as in (4.2) can be found only if D- , viewed as a
random linear map from � to R=, is almost surely surjective. This suggests that
an important condition will be that of the invertibility of theMalliavin matrix M
defined by

M8 9 = 〈D-8,D- 9 〉 , (4.3)
where the scalar product is taken in �. Assuming that M is invertible, the solution
with minimal �-norm to the overdetermined system X8 = 〈D-,.8〉 (where X8
denotes the 8th canonical basis vector in R=) is given by

.8 = (D-)∗M−1X8 .

Assuming a sufficient amount of regularity, this shows that a bound of the type
appearing in the assumption of Lemma 4.1 holds for a random variable - whose
Malliavin matrix M is invertible and whose inverse has a finite moment of
sufficiently high order. The following theorem should therefore not come as a
surprise.

Theorem 4.3 Let - be a Malliavin smooth R=-valued random variable such that
the Malliavin matrix defined in (4.3) is almost surely invertible and has inverse
moments of all orders. Then the law of - has a smooth density with respect to
Lebesgue measure.

The main ingredient of the proof of this theorem is the following lemma.

Lemma 4.4 Let - be as above and let / ∈ S. Then, there exists /̄ ∈ S such that
the identity

E
(
/m8� (-)

)
= E

(
� (-) /̄

)
, (4.4)

holds for every � ∈ C∞0 .
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Proof. Following the calculation above, defining the �-valued random variable .8
by

.8 =

=∑
9=1
(D- 9 )M−1

98 ,

we have the identity m8� (-) = 〈D� (-), .8〉. As a consequence, (4.4) holds with

/̄ = X
(
/ .8

)
.

The claim now follows fromRemark 3.4 and Proposition 3.9, as soon as we can show
that M−1

98
∈ S. This however follows from the chain rule for D and Remark 3.4,

since the former shows that D :M−1
98

can be written as a polynomial in M−1
98

and
Dℓ- for ℓ ≤ : .

Proof of Theorem 4.3. By Lemma 4.1 it suffices to show that under the assumptions
of the theorem, for every multiindex : and every random variable . ∈ S, there
exists a random variable / ∈ S such that

E
(
. �:� (-)

)
= E

(
� (-)/

)
. (4.5)

We proceed by induction, the claim being trivial for : = 0. Assuming that (4.5)
holds for some : , we then obtain as a consequence of Lemma 4.4 that

E
(
.�:m8� (-)

)
= E

(
m8� (-)/

)
= E

(
� (-) /̄

)
,

for some /̄ ∈ S, which is precisely the required bound (4.5), but for : + 48.

5 Malliavin Calculus for Diffusion Processes

We are now in possession of all the abstract tools required to tackle the proof of
Hörmander’s theorem. Before we start however, we discuss how DB-C can be
computed when -C is the solution to an SDE of the type (1.1). Recall first that, by
definition, (1.1) is equivalent to the Itô stochastic differential equation

3-C = +̃0(-C) 3C +
<∑
8=1
+8 (-C) 3,8 (C) , (5.1)

with +̃0 given in coordinates by

(+̃0)8 (G) = (+0)8 (G) +
1
2
(m:+ 9 )8 (G) (+ 9 ): (G) ,

with summation over repeated indices implied. We assume that+ 9 ∈ C∞
1
, the space

of smooth vector fields that are bounded, together with all of their derivatives. It
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immediately follows that, for every initial condition G0 ∈ R=, (5.1) can be solved by
simple Picard iteration, just like ordinary differential equations, but in the space of
adapted square integrable processes.

An important tool for our analysis will be the linearisation of (1.1) with respect
to its initial condition. This is obtained by simply formally differentiating both
sides of (1.1) with respect to the initial conditions G0. For any B ≥ 0, this yields the
non-autonomous linear equation

3�B,C = �+̃0(-C) �B,C 3C +
<∑
8=1

�+8 (-C) �B,C 3,8 (C) , �B,B = id , (5.2)

where id denotes the = × = identity matrix. This in turn is equivalent to the
Stratonovich equation

3�B,C = �+0(-C) �B,C 3C +
<∑
8=1

�+8 (-C) �B,C ◦ 3,8 (C) , �B,B = id . (5.3)

Higher order derivatives � (:)0,C with respect to the initial condition can be defined
similarly. It is straightforward to verify that this equation admits a unique solution,
and that this solution satisfies the identity

�C,D�B,C = �B,D , (5.4)

for any three times B ≤ C ≤ D. Under our standing assumptions for SDEs, the
Jacobian has moments of all orders:
Proposition 5.1 If +8 ∈ C∞

1
for all 8, then supB,C≤) E|�B,C |? < ∞ for every ) > 0

and every ? ≥ 1.

Proof. We write |�| for the Frobenius norm of a matrix �. A tedious application
of Itô’s formula shows that for even integers ? ≥ 4 one has

3 |�B,C |? = ? |�B,C |?−2
(
〈�B,C , �+̃0(-C) �B,C〉 3C +

<∑
8=1
〈�B,C , �+8 (-C) �B,C〉 3,8 (C)

)
+ ?

2
|�B,C |?−4

<∑
8=1

(
(? − 2)〈�+8 (-C)�B,C , �B,C〉2 + |�B,C |2(tr�+8 (-C)�B,C)2

)
3C .

Writing this in integral form, taking expectations on both sides and using the
boundedness of the derivatives of the vector fields, we conclude that there exists a
constant � such that

E|�B,C |? ≤ =?/2 + �
∫ C

B

E|�B,A |? 3A ,

so that the claim now follows from Gronwall’s lemma. (The =?/2 comes from the
initial condition, which equals |id|? = =?/2.)
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As a consequence of (5.4), one has �B,C = �0,C�
−1
0,B . One can also verify that the

inverse �−1
0,C of the Jacobian solves the SDE

3�−1
0,C = −�

−1
0,C �+0(-C) 3C −

<∑
8=1

�−1
0,C �+8 (-C) ◦ 3,8 . (5.5)

This follows from the chain rule by noting that if we denote byΨ(�) = �−1 the map
that takes the inverse of a square matrix, then we have �Ψ(�)� = −�−1��−1.

On the other hand, we can use (3.12) to, at least on a formal level, take the
Malliavin derivative of the integral form of (5.1), which then yields for A ≤ C the
identity

D ( 9)A - (C) =
∫ C

A

�+̃0(-B)D ( 9)A -B 3B +
<∑
8=1

∫ C

A

�+8 (-B)D ( 9)A -B 3,8 (B) ++ 9 (-A) .

We see that, save for the initial condition at time C = A given by+ 9 (-A), this equation
is identical to the integral form of (5.2)! Using the variation of constants formula,
it follows that for B < C one has the identity

D ( 9)B -C = �B,C+ 9 (-B) . (5.6)

Furthermore, since -C is independent of the later increments of , , we have
D ( 9)B -C = 0 for B ≥ C. This formal manipulation can easily be justified a posteriori,
thus showing that the random variables -C belongs to W1,? for every ?. In fact,
one has even more than that:

Proposition 5.2 If the vector fields +8 belong to C∞
1
and -0 ∈ R= is deterministic,

then the solution -C to (5.1) belongs to S for every C ≥ 0.

Before we prove this, let us recall the following bound on iterated Itô integrals.

Lemma 5.3 Let : ≥ 1 and let E be a stochastic process on R: with E‖E‖?
!?
< ∞

for some ? ≥ 2. Then, one has the bound

E
���∫ C

0
· · ·

∫ B2

0
E(B1, . . . , B: ) 3,81 (B1) · · · 3,8: (B: )

���? ≤ �C : (?−2)
2 E‖E‖?

!?
.

Proof. The proof goes by induction over : . For : = 1, it follows from the
Burkholder-David-Gundy inequality followed by Hölder’s inequality that

E
���∫ C

0
E(B) 3,8 (B)

���? ≤ �E���∫ C

0
|E(B) |2 3B

���?/2 ≤ �C ?−2
2 E

∫ C

0
|E(B) |? 3B , (5.7)
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as claimed. In the general case, we set

Ẽ(B: ) =
∫ B:

0
· · ·

∫ B2

0
E(B1, . . . , B: ) 3,81 (B1) · · · 3,8:−1 (B:−1) .

Combining (5.7) with the induction hypothesis, we obtain

E
��� ∫ C

0
Ẽ(B: ) 3,8: (B: )

���? ≤ �C ?−2
2

∫ C

0
E|Ẽ(B: ) |? 3B:

≤ �C
?−2

2 C
(:−1) (?−2)

2

∫ C

0
E
(∫ B:

0
· · ·

∫ B1

0
|E(B1, . . . , B: ) |? 3B1 · · · 3B:−1

)
3B: ,

and the claim follows from Fubini’s theorem.

Proof of Proposition 5.2. We first derive an equation for the Malliavin derivative
of the Jacobian �B,C . Differentiating the integral form of (5.2) we obtain for A < B
the identity

D ( 9)A �B,C =

∫ C

B

�+̃0(-D)D ( 9)A �B,D 3D +
∫ C

B

�2+̃0(-D)
(
�B,D,D

( 9)
A -D

)
3D

+
<∑
8=1

∫ C

B

�+8 (-D)D ( 9)A �B,D 3,8 (D) +
∫ C

B

�2+8 (-D)
(
�B,D,D

( 9)
A -D

)
3,8 (D) .

Using (5.6), we can rewrite this as

D ( 9)A �B,C =

∫ C

B

�+̃0(-D)D ( 9)A �B,D 3D +
∫ C

B

�2+̃0(-D)
(
�B,D, �A,D+ 9 (-A)

)
3D

+
<∑
8=1

∫ C

B

�+8 (-D)D ( 9)A �B,D 3,8 (D)

+
<∑
8=1

∫ C

B

�2+8 (-D)
(
�B,D, �A,D+ 9 (-A)

)
3,8 (D) .

Once again, we see that this is nothing but an inhomogeneous version of the
equation for �B,C itself. The variation of constants formula thus yields

D ( 9)A �B,C =

∫ C

B

�D,C�
2+̃0(-D)

(
�B,D, �A,D+ 9 (-A)

)
3D

+
<∑
8=1

∫ C

B

�D,C�
2+8 (-D)

(
�B,D, �A,D+ 9 (-A)

)
3,8 (D) .

This allows to show by induction that, for any integer : , the iterated Malliavin
derivative D ( 91)A1 · · ·D

( 9: )
A: - (C) with A1 ≤ · · · ≤ A: can be expressed as a finite sum
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of terms consisting of a multiple iterated Wiener / Lebesgue integral with integrand
given by a finite product of components of the type �B8 ,B 9 with 8 < 9 , as well as
functions in C∞

1
evaluated at -B8 . This has moments of all orders as a consequence

of Proposition 5.1, combined with Lemma 5.3.

Theorem 5.4 Let G0 ∈ R= and let -C be the solution to (1.1). If the vector fields
{+ 9 } ⊂ C∞

1
satisfy the parabolic Hörmander condition, then the law of -C has a

smooth density with respect to Lebesgue measure.

Proof. Denote byA0,C the operatorA0,CE =
∫ C

0 �B,C+ (-B)E(B) 3B, where E is a square
integrable, not necessarily adapted, R<-valued stochastic process and + is the
= × < matrix-valued function obtained by concatenating the vector fields + 9 for
9 = 1, . . . , <. With this notation, it follows from (5.6) that the Malliavin covariance
matrix M0,C of -C is given by

M0,C = A0,CA
∗
0,C =

∫ C

0
�B,C+ (-B)+∗(-B)�∗B,C 3B .

It follows from (5.6) that the assumptions of Theorem 4.3 are satisfied for the
random variable -C , provided that we can show that ‖M−1

0,C ‖ has bounded moments
of all orders. This in turn follows by combining Lemma 6.2 with Theorem 6.3
below.

6 Hörmander’s Theorem

This section is devoted to a proof of the fact that Hörmander’s condition is sufficient
to guarantee the invertibility of the Malliavin matrix of a diffusion process. For
purely technical reasons, it turns out to be advantageous to rewrite the Malliavin
matrix as

M0,C = �0,CC0,C�
∗
0,C , C0,C =

∫ C

0
�−1

0,B+ (-B)+
∗(-B)

(
�−1

0,B
)∗
3B ,

where C0,C is the reduced Malliavin matrix of our diffusion process.

Remark 6.1 The reason for considering the reduced Malliavin matrix is that the
process appearing under the integral in the definition of C0,C is adapted to the
filtration generated by,C . This allows us to use some tools from stochastic calculus
that would not be available otherwise.

Since we assumed that �0,C has inverse moments of all orders, the invertibility
of M0,C is equivalent to that of C0,C . Note first that since C0,C is a positive definite
symmetric matrix, the norm of its inverse is given by

‖C−1
0,C ‖ =

(
inf
|[ |=1
〈[, C0,C[〉

)−1
.
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A very useful observation is then the following:

Lemma 6.2 Let" be a symmetric positive semidefinite =×=matrix-valued random
variable such that E‖" ‖? < ∞ for every ? ≥ 1 and such that, for every ? ≥ 1
there exists �? such that

sup
|[ |=1

P
(
〈[, "[〉 < Y

)
≤ �?Y? , (6.1)

holds for every Y ≤ 1. Then, E‖"−1‖? < ∞ for every ? ≥ 1.

Proof. The non-trivial part of the result is that the supremum over [ is taken outside
of the probability in (6.1). For Y > 0, let {[: }:≤# be a sequence of vectors with
|[: | = 1 such that for every [ with |[ | ≤ 1, there exists : such that |[: − [ | ≤ Y2. It
is clear that one can find such a set with # ≤ �Y2−2= for some � > 0 independent
of Y. We then have the bound

〈[, "[〉 = 〈[: , "[:〉 + 〈[ − [: , "[〉 + 〈[ − [: , "[:〉
≥ 〈[: , "[:〉 − 2‖" ‖Y2 ,

so that

P
(

inf
|[ |=1
〈[, "[〉 ≤ Y

)
≤ P

(
inf
:≤#
〈[: , "[:〉 ≤ 4Y

)
+ P

(
‖" ‖ ≥ 1

Y

)
≤ �Y2−2= sup

|[ |=1
P
(
〈[, "[〉 ≤ 4Y

)
+ P

(
‖" ‖ ≥ 1

Y

)
.

It now suffices to use (6.1) for ? large enough to bound the first term andChebychev’s
inequality combined with the moment bound on ‖" ‖ to bound the second term.

As a consequence of this, Theorem 5.4 is a corollary of:

Theorem 6.3 Under the assumptions of Theorem 5.4, for every initial condition
G ∈ R=, we have the bound

sup
|[ |=1

P
(
〈[, C0,1[〉 < Y

)
≤ �?Y? ,

for suitable constants �? and all ? ≥ 1.

Remark 6.4 The choice C = 1 as the final time is of course completely arbitrary.
Here and in the sequel, we will always consider functions on the time interval
[0, 1].
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Before we turn to the proof of this result, we introduce a very useful notation
which was introduced in [HM11]. Given a family � = {�Y}Y∈(0,1] of events
depending on some parameter Y > 0, we say that � is “almost true” if, for every
? > 0 there exists a constant �? such that P(�Y) ≥ 1 − �?Y? for all Y ∈ (0, 1].
Similarly for “almost false”. Given two such families of events � and �, we say
that “� almost implies �” and we write � ⇒Y � if � \ � is almost false. It is
straightforward to check that these notions behave as expected (almost implication
is transitive, finite unions of almost false events are almost false, etc). Note also
that these notions are unchanged under any reparametrisation of the form Y ↦→ YU

for U > 0. Given two families - and . of real-valued random variables, we will
similarly write - ≤Y . as a shorthand for the fact that {-Y ≤ .Y} is “almost true”.

Before we proceed, we state the following useful result, where ‖ · ‖∞ denotes
the !∞ norm and ‖ · ‖U denotes the best possible U-Hölder constant.

Lemma 6.5 Let 5 : [0, 1] → R be continuously differentiable and let U ∈ (0, 1].
Then, the bound

‖mC 5 ‖∞ = ‖ 5 ‖1 ≤ 4‖ 5 ‖∞max
{
1, ‖ 5 ‖−

1
1+U
∞ ‖mC 5 ‖

1
1+U
U

}
holds, where ‖ 5 ‖U denotes the best U-Hölder constant for 5 .

Proof. Denote by G0 a point such that |mC 5 (G0) | = ‖mC 5 ‖∞. It follows from the
definition of the U-Hölder constant ‖mC 5 ‖CU that |mC 5 (G) | ≥ 1

2 ‖mC 5 ‖∞ for every G
such that |G − G0 | ≤

(
‖mC 5 ‖∞/2‖mC 5 ‖CU

)1/U. The claim then follows from the fact
that if 5 is continuously differentiable and |mC 5 (G) | ≥ � over an interval �, then
there exists a point G1 in the interval such that | 5 (G1) | ≥ �|� |/2.

With these notations at hand, we have the following statement, which is
essentially a quantitative version of the Doob-Meyer decomposition theorem.
Originally, it appeared in [Nor86], although some form of it was already present in
earlier works. The statement and proof given here are slightly different from those
in [Nor86], but are very close to them in spirit.

Lemma 6.6 Let, be an <-dimensional Wiener process and let � and � be R and
R<-valued adapted processes such that, for U = 1

3 , one has E
(
‖�‖U + ‖�‖U

) ?
< ∞

for every ?. Let / be the process defined by

/C = /0 +
∫ C

0
�B 3B +

∫ C

0
�B 3, (B) . (6.2)

Then, there exists a universal constant A ∈ (0, 1) such that one has{
‖/ ‖∞ < Y

}
⇒Y

{
‖�‖∞ < YA

}
&

{
‖�‖∞ < YA

}
.
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Proof. Recall the exponential martingale inequality [RY99, p. 153], stating that if
" is any continuous martingale with quadratic variation process 〈"〉(C), then

P
(
sup
C≤)
|" (C) | ≥ G & 〈"〉()) ≤ H

)
≤ 2 exp

(
−G2/2H

)
,

for every positive ) , G, H. With our notations, this implies that for any @ < 1 and
any adapted process �, one has the almost implication{

‖�‖∞ < Y
}
⇒Y

{


∫ ·

0
�C 3, (C)





∞
< Y@

}
. (6.3)

With this bound in mind, we apply Itô’s formula to /2, so that

/2
C = /

2
0 + 2

∫ C

0
/B �B 3B + 2

∫ C

0
/B �B 3, (B) +

∫ C

0
�2
B 3B . (6.4)

Since ‖�‖∞ ≤Y Y−1/4 (or any other negative exponent for that matter) by assumption
and similarly for �, it follows from this and (6.3) that{
‖/ ‖∞ < Y

}
⇒Y

{���∫ 1

0
�B /B 3B

��� ≤ Y 3
4

}
&

{���∫ 1

0
�B /B 3, (B)

��� ≤ Y 2
3

}
.

Inserting these bounds back into (6.4) and applying Jensen’s inequality then yields{
‖/ ‖∞ < Y

}
⇒Y

{∫ 1

0
�2
B 3B ≤ Y

1
2

}
⇒

{∫ 1

0
|�B | 3B ≤ Y

1
4

}
.

We now use the fact that ‖�‖U ≤Y Y−@ for every @ > 0 and we apply Lemma 6.5
with mC 5 (C) = |�C | (we actually do it component by component), so that{

‖/ ‖∞ < Y
}
⇒Y

{
‖�‖∞ ≤ Y

1
17
}
,

say. In order to get the bound on �, note that we can again apply the exponential
martingale inequality to obtain that this “almost implies” the martingale part in
(6.2) is “almost bounded” in the supremum norm by Y 1

18 , so that{
‖/ ‖∞ < Y

}
⇒Y

{


∫ ·

0
�B 3B





∞
≤ Y 1

18

}
.

Finally applying again Lemma 6.5 with mC 5 (C) = �C , we obtain that{
‖/ ‖∞ < Y

}
⇒Y

{
‖�‖∞ ≤ Y1/80} ,

and the claim follows with A = 1/80.
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Remark 6.7 By making U arbitrarily close to 1/2, keeping track of the different
norms appearing in the above argument, and then bootstrapping the argument, it is
possible to show that{

‖/ ‖∞ < Y
}
⇒Y

{
‖�‖∞ ≤ Y?

}
&

{
‖�‖∞ ≤ Y@

}
,

for ? arbitrarily close to 1/5 and @ arbitrarily close to 3/10. This seems to be a very
small improvement over the exponent 1/8 that was originally obtained in [Nor86],
but is certainly not optimal either. The main reason why our result is suboptimal is
that we move several times back and forth between !1, !2, and !∞ norms. (Note
furthermore that our result is not really comparable to that in [Nor86], since Norris
used !2 norms in the statements and his assumptions were slightly different from
ours.)

We now have all the necessary tools to prove Theorem 6.3:

Proof of Theorem 6.3. We fix some initial condition G0 ∈ R= and some unit vector
[ ∈ R=. With the notation introduced earlier, our aim is then to show that{

〈[, C0,1[〉 < Y
}
⇒Y ∅ , (6.5)

or in other words that the statement 〈[, C0,1[〉 < Y is “almost false”. As a shorthand,
we introduce for an arbitrary smooth vector field � on R= the process /� defined by

/� (C) = 〈[, �−1
0,C � (GC)〉 ,

so that

〈[, C0,1[〉 =
<∑
:=1

∫ 1

0
|/+: (C) |2 3C ≥

<∑
:=1

(∫ 1

0
|/+: (C) | 3C

)2
. (6.6)

The processes /� have the nice property that they solve the stochastic differential
equation

3/� (C) = /[�,+0] (C) 3C +
<∑
8=1

/[�,+: ] (C) ◦ 3,: (C) , (6.7)

which can be rewritten in Itô form as

3/� (C) =
(
/[�,+0] (C) +

<∑
:=1

1
2
/[[�,+: ],+: ] (C)

)
3C +

<∑
8=1

/[�,+: ] (C) 3,: (C) . (6.8)

Since we assumed that all derivatives of the + 9 grow at most polynomially, we
deduce from the Hölder regularity of Brownian motion that, provided that the
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derivatives of � grow at most polynomially fast, /� does indeed satisfy the
assumptions on its Hölder norm required for the application of Norris’s lemma.
The idea now is to observe that, by (6.6), the left hand side of (6.5) states that /� is
“small” for every � ∈ V0. One then argues that, by Norris’s lemma, if /� is small
for every � ∈ V: then, by considering (6.7), it follows that /� is also small for
every � ∈ V:+1. Hörmander’s condition then ensures that a contradiction arises at
some stage, since /� (0) = 〈� (G0), b〉 and there exists : such that V: (G0) spans all
of R=.

Let us make this rigorous. It follows from Norris’s lemma and (6.8) that one
has the almost implication{

‖/� ‖∞ < Y
}
⇒Y

{
‖/[�,+: ] ‖∞ < YA

}
&

{
‖/� ‖∞ < YA

}
,

for : = 1, . . . , < and for � = [�,+0] + 1
2
∑<
:=1 [[�,+: ], +: ]. Iterating this bound a

second time, this time considering the equation for /� , we obtain that{
‖/� ‖∞ < Y

}
⇒Y

{
‖/[[�,+: ],+ℓ ] ‖∞ < YA

2}
,

so that we finally obtain the implication{
‖/� ‖∞ < Y

}
⇒Y

{
‖/[�,+: ] ‖∞ < YA

2}
, (6.9)

for : = 0, . . . , <.
At this stage, we are basically done. Indeed, combining (6.6) with Lemma 6.5

as above, we see that{
〈[, C0,1[〉 < Y

}
⇒Y

{
‖/+: ‖∞ < Y1/5} .

Applying (6.9) iteratively, we see that for every : > 0 there exists some @: > 0
such that {

〈[, C0,1[〉 < Y
}
⇒Y

⋂
+∈V:

{
‖/+ ‖∞ < Y@:

}
.

Since /+ (0) = 〈[,+ (G0)〉 and since there exists some : > 0 such that V: (G0) = R=,
the right hand side of this expression is empty for some sufficiently large value of
: , which is precisely the desired result.

7 Hypercontractivity

The aim of this section is to prove the following result. Let )C denote the semigroup
generated by the Ornstein–Uhlenbeck operator Δ defined in Section 3. In other
words, one sets )C = exp(−ΔC), which can be defined by functional calculus. Since
we have an explicit eigenspace decomposition of Δ by Proposition 3.7, this is
equivalent to simply setting )C- = 4−=C- for every - ∈ H=. The main result of this
section is the following.
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Theorem 7.1 For ?, @ ∈ (1,∞) and C ≥ 0 with ?−1
@−1 = 4

2C , one has

‖)C- ‖!? ≤ ‖- ‖!@ , (7.1)

for every - ∈ !@ (Ω,P).

Versions of this theorem were first proved by Nelson [Nel66, Nel73] with again
constructive quantum field theory as his motivation. An operator )C which satisfies
a bound of the type (7.1) for some ? > @ is called “hypercontractive”. An extremely
important feature of this bound is that it holds without the appearance of any
proportionality constant. As we will see in Corollary 7.3 below, this makes it stable
under tensorisation, which is a very powerful property.

Let us provide a simple application of this result. An immediate corollary is that,
for any - ∈ H= and ? ≥ 1, one has the very useful “reverse Jensen’s inequality”

E-2? ≤ (2? − 1)=?
(
E-2) ? . (7.2)

Although we have made no attempt at optimising this statement, it is already
remarkably precise: using Stirling’s formula, one can verify from the explicit
formula for the moments of a Gaussian distribution that in the case = = 1 (when all
elements of H= have Gaussian distributions) and for large ?, one has the asymptotic
behaviour

E-2? ≤ (2? − 1)?
√

24
1
2−?

(
E-2) ? .

It is however for = ≥ 2 that the bound (7.2) reveals its full power since the possible
distributions for elements of H= then cannot be described by a finite-dimensional
family anymore.

A crucial ingredient in the proof of Theorem 7.1 is the following tensorisation
property. Consider bounded linear operators )8 : !@ (Ω8,P8) → !? (Ω8,P8) for
8 ∈ {1, 2}1 and define the probability space (Ω,P) by

Ω = Ω1 ×Ω2 , P = P1 ⊗ P2 .

Then, on random variables of the form - (l) = -1(l1)-2(l2), one defines an
operator ) = )1 ⊗ )2 by setting ()-) (l) = ()1-1) (l1) ()2-2) (l2), where we
used the notation l = (l1, l2). Extending ) by linearity, this defines ) on a dense
subset of (Ω,P). On that subset one can also write ) = )̂2)̂1 where )̂1 acts on
functions of Ω by

()̂1-) (l1, l2) =
(
)1- (·, l2)

)
(l1) ,

1We will always assume our spaces to be standard probability spaces, so that no pathologies
arise when considering products and conditional expectations.
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and similarly for )̂2. We claim that if each )8 satisfies a hypercontractive bound of
the type (7.1), then so does ) . A key ingredient for proving this is the following
lemma, where we write for example ‖- ‖!?1 as a shorthand for the function
l2 ↦→ ‖- (·, l2)‖!? (Ω1,P1) .

Lemma 7.2 If ? ≥ @ ≥ 1, then one has ‖‖- ‖!@1 ‖!? ≤ ‖‖- ‖!?2 ‖!@ .

Proof. The holds for @ = 1 by the triangle inequality since

‖‖- ‖!1
1
‖!? =




 ∫
|- (l1, ·) | P1(3l1)





!?
≤

∫ 


|- (l1, ·) |




!?

P1(3l1)

= ‖‖- ‖!?2 ‖!1 .

Exploiting the fact that ‖- ‖!@ = ‖|- |@ ‖1/@!1 , the general case follows:

‖‖- ‖!@1 ‖!? = ‖‖- ‖
@

!
@

1
‖1/@
!?/@

= ‖‖|- |@ ‖!1
1
‖1/@
!?/@

≤ ‖‖|- |@ ‖
!
?/@
2
‖1/@
!1 = ‖‖- ‖@

!
?

2
‖1/@
!1 = ‖‖- ‖!?2 ‖!@ ,

thus concluding the proof.

Corollary 7.3 In the above setting if, for some ? ≥ @ ≥ 1 one has ‖)8- ‖!? ≤
‖- ‖!@ , then one also has ‖)- ‖!? ≤ ‖- ‖!@ .

Proof. One has

‖)- ‖!? = ‖‖)̂1)̂2- ‖!?1 ‖!? ≤ ‖‖)̂2- ‖!@1 ‖!?

≤ ‖‖)̂2- ‖!?2 ‖!@ ≤ ‖‖- ‖!@2 ‖!@ = ‖- ‖!@ ,

as claimed.

Recall now that, in the context of a Gaussian probability space, the space W

consisting of random variables of the type

- = � (b1, . . . , b=) , � ∈ C∞1 , (7.3)

where b8 = , (41) for an orthonormal basis {48} of the Cameron-Martin space �,
is dense in !2(Ω,P). Similarly, one can show that it is actually dense in every
!? (Ω,P) for ? ∈ [1,∞), and we will assume this in the sequel.

As a consequence, in order to prove Theorem 7.1, it suffices to show that (7.1)
holds for random variables of the type (7.3) for any fixed =. Note now that, using
(3.9) for the evaluation of the Skorokhod integral, one has

Δ- = XD- = X
∑
8

(m8�) (b1, . . . , b=)48
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=
∑
8

(
(m8�) (b1, . . . , b=)b8 − (m2

8 �) (b1, . . . , b=)
)
.

In other words, one has Δ =
∑=
8=1 Δ8, where

Δ8 = −m2
8 + b8 m8 .

At this stage we note that, given an ordered orthonormal basis as above, the closed
subspace of !? (Ω,P) given by the closure of the subspace spanned by random
variables of the type (7.3) for any fixed = is canonically isomorphic (precisely via
(7.3)) to !? (R=,N(0, id)). Furthermore, )C maps that space into itself, so let us
write ) (=)C for the corresponding operator on !? (R=,N(0, id)). It follows from the
fact that all of the Δ8 commute that one has

)
(=)
C = )

(1)
C ⊗ . . . ⊗ )

(1)
C (= times),

so that as a consequence of Corollary 7.3, Theorem 7.1 follows if we can show the
analogous statement for ) (1)C .

At this stage, we note that the operator L def
= m2

G − GmG is the generator of the
standard one-dimensional Ornstein-Uhlenbeck process given by the solutions to
the SDE

3- = −- 3C +
√

2 3�(C) , -0 = G , (7.4)

where � is a standard one-dimensional Brownian motion. The Brownian motion �
appearing here has nothing to do whatsoever with the white noise process, that
was the start of our discussion! In other words, it follows from Itô’s formula that if
we define an operator %C on !? (R,N(0, 1)) by(

%Ci
)
(G) = EGi(-C) ,

then %Ci solves the equation

mC%Ci = L%Ci . (7.5)

Since the operatorLis essentially self-adjoint on C∞
1
(see for example [RS72,RS75]

for more details), it follows that %C as defined above does indeed coincide with
the operator ) (1)C , modulo the isomorphism mentioned above. By the variation of
constants formula, the solution to (7.4) is given by

- (C) = 4−CG +
√

2
∫ C

0
4B−C3�(B) .

In law, for any fixed C (not as a function of C!), this can be rewritten as

- (C) law
= 4−CG +

√
1 − 4−2C\ , \ ∼N(0, 1) ,
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so that (
%Ci

)
(G) = Ei

(
4−CG +

√
1 − 4−2C\

)
. (7.6)

We immediately deduce from this formula the following important properties. First,
by differentiating both sides in G, we see that

mG (%Ci) (G) = 4−C (%CmGi) (G) . (7.7)

Applying the Cauchy-Schwarz inequality to (7.6), we also obtain the pointwise
bound (

%C (i · k)
)
(G)2 ≤

(
%Ci

2) (G) (%Ck2) (G) . (7.8)
We also note that if we take G random N(0, 1), independent of \, and interpret the
expectation in the right-hand side of (7.6) as ranging over both G and \, then it is
independent of C. In other words, setting ` =N(0, 1), one has∫ (

%C 5
)
(G) `(3G) =

∫
5 (G) `(3G) , ∀C ≥ 0 . (7.9)

Differentiating in C and setting C = 0 thus yields for 5 ∈ C∞
1∫ (

L 5
)
(G) `(3G) = 0 , ` =N(0, 1) . (7.10)

Finally, recall that integration by parts yields∫
5 (G)

(
L6

)
(G) `(3G) = −

∫
5 ′(G)6′(G) `(3G) . (7.11)

(This of course also follows from how the Ornstein–Uhlenbeck operator XD was
defined in the first place.)

Before we can give the proof of hypercontractivity of %C , we need a final
ingredient. Recall that Sobolev embedding guarantees that the !? norm of a
function can be bounded by its �1 Sobolev norm, provided that 1/? ≥ 1/2 − 1/=,
where = denotes the dimension of the ambient space. The problem with this
embedding is twofold: the exponent ? depends on the dimension of the space, as
do the proportionality constants that arise. It turns out that if we weaken !? to
“! log !”, then a Sobolev-type embedding still holds, but this time independently
of dimension. This was first remarked by Gross [Gro75] and has turned out to be
extremely useful in a variety of context. The precise statement is as follows.

Theorem 7.4 The measure ` satisfies the log-Sobolev inequality, namely∫
5 2 log 5 2 3` −

∫
5 2 3` log

∫
5 2 3` ≤ 2

∫
|mG 5 |2 3` ,

for all 5 ∈ W1,2.
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Proof. (This proof is essentially taken from [Led92].) By a simple density argument,
we can assume that 5 is smooth and bounded. One then has limC→∞(%C 5 2) (G) =∫
5 2 3`, uniformly over compact sets. As a consequence, we can use the fundamental

theorem of calculus to write∫
5 2 log 5 2 3` −

∫
5 2 3` log

∫
5 2 3`

= −
∫ ∞

0

3

3C

∫
%C 5

2 log %C 5 2 3` 3C = −
∫ ∞

0

∫
(L%C 5 2) log %C 5 2 3` 3C

=

∫ ∞

0

∫ (mG%C 5 2)2
%C 5

2 3` 3C = 4
∫ ∞

0
4−2C

∫ (
%C ( 5 mG 5 )

)2

%C 5
2 3` 3C

≤ 4
∫ ∞

0
4−2C

∫
%C (mG 5 )2 3` 3C = 4

∫ ∞

0
4−2C

∫
(mG 5 )2 3` 3C ,

and the claim follows. Here, we first used (7.5), as well as the fact that
∫
L%C 5

2 3` =
0 by (7.10). To get the third line, we used (7.11), followed by (7.7). Finally, we
used (7.8) and (7.9).

We now have everything in place for the proof of the main theorem of this
section.

Proof of Theorem 7.1. As already discussed, we only need to show (7.1) for %C
rather than )C . Take a smooth strictly positive function 5 ∈ C∞

1
(R) and write

Φ(C) = ‖%C 5 ‖?(C) , with ?(C) = 1 + (@ − 1)42C , so that in particular ¤? = 2(? − 1).
We also recall that for smooth positive functions 6 and ℎ one has

3

3C
6ℎ = 6ℎ−1 ( ¤ℎ 6 log 6 + ℎ ¤6

)
.

A simple calculation then shows that, writing 5C = %C 5 , one has

¤Φ(C) = Φ1−?
(
− 2(? − 1)

?2

∫
5
?
C 3` log

∫
5
?
C 3`

+ 1
?

∫ (
? 5

?−1
C L 5C + 2(? − 1) 5 ?C log 5C

)
3`

)
= −2(? − 1)

?2 Φ1−?
(∫

5
?
C 3` log

∫
5
?
C 3` −

∫
5
?
C log 5 ?C 3`

+ 2
∫ (

mG 5
?/2)2

3`

)
.

The log-Sobolev inequality precisely guarantees that the right-hand side is always
negative, thus proving the claim.
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8 Graphical notations and the fourth moment theorem

In this section we show that random variables that belong to a Wiener chaos of fixed
order satisfy an incredibly strong form of the central limit theorem: any sequence
of random variables such that their variances converge to a finite value and their
fourth cumulants converge to 0 must necessarily converge in law to a Gaussian
distribution! On the other hand, we will see that if - ∈ H= for some = ≥ 2, then the
law of - itself cannot be Gaussian. (In particular, the convergence to a Gaussian
mentioned above can only ever hold in law, never in probability.) In fact, its fourth
cumulant is necessarily strictly positive!

These surprising results were obtained quite recently by Nualart and Peccati
in [NP05]. Their proof can make advantageous use of some graphical notation.
As usual, we fix a separable Hilbert space � and we note that there is a natural
definition of tensor powers �⊗( for any finite set (. Elements of �⊗( are linear
combinations of expressions of the form

⊗
8∈( ℎ8 with the usual identifications

suggested by the notation. (Of course, �⊗( is isomorphic to �⊗: with : the number
of elements of (, but this isomorphism is not canonical since it depends on a choice
of enumeration of (.) We will sometimes call elements of ( “indices”.

It is oftentimes natural to consider ( as being endowed with a subgroup �( of
its group of permutations. There is a natural action of �( onto �⊗( and we will
again write �⊗( for the subspace of those elements that are invariant under that
action. In all the cases we consider, one can write ( = (1 t . . . t (< for some
< ≥ 1 and �( is given by all the permutations leaving the (8 invariant. In such a
situation, we will say that elements belonging to the same (8 are indistinguishable
and �⊗( is canonically isomorphic to �⊗B(1 ⊗ . . . ⊗ �⊗B(< .

It will be convenient to use graphical notations to represent elements of spaces
of the type �⊗(. In particular, the partition of ( into subsets of indistinguishable
elements will be clear from such a notation. For example, if ( is a set of 4
indistinguishable elements, we may denote 5 ∈ �⊗B( by

5

with the four black nodes representing the elements of (. If on the other hand one
has (̄ = (̄1 t (̄2 with each (̄8 having two indistinguishable elements, we may write
6 ∈ �⊗B (̄ for example as

6

Tensor products are then naturally denoted by juxtaposition of pictures, so 5 ⊗ 6 is
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simply denoted by

5 6

Another important operation is a “partial trace” operation. Given a set ( and a pair
? = {G, H} of two distinct elements of (, we write Tr? : �⊗( → �⊗((\?) for the
linear map such that

Tr?
⊗
8∈(

ℎ8 = 〈ℎG , ℎH〉
⊗
8∈(\?

ℎ8 . (8.1)

Note that if ? and ?̄ are two disjoint pairs, the corresponding partial traces
commute, so one has natural operators TrP for P any collection of disjoint pairs.
Such operations will be represented by identifying the elements in the pair ? in our
graphical notation and drawing them in grey.

For example, if 6 is as above and ? = (G, H) with G ∈ (̄1 and H ∈ (̄2, one would
denote Tr? 6 by

6 (8.2)

Remark 8.1 Despite (8.1) looking quite “harmless”, the operator Tr? is unbounded
and not even closable! For example, if {4=}=≥1 is an orthonormal basis of � and
we set 5 =

∑
=
(−1)=
=
(4= ⊗ 4=), then 5 ∈ � ⊗ � since

∑
1/=2 < ∞, but Tr 5 is not

defined. Furthermore, one can easily find approximations 5: such that 5: → 5 in
� ⊗ � but Tr 5: converges to any given real number (or diverges).

However, we will only ever consider expressions of the form TrP( 51 ⊗ . . . ⊗ 5<)
where 58 ∈ �⊗(8 and every pair ? = {G, H} ∈ P is such that G ∈ (8 and H ∈ ( 9 for
8 ≠ 9 . In this particular case, it turns out that this expression is bounded as an
<-linear operator, i.e. ‖ TrP( 51 ⊗ . . . ⊗ 5<)‖ .

∏
8 ‖ 58‖. In particular, expressions

like (8.2) actually never appear.

Given a finite set ( partitioned into two sets: ( = ( 5 t (= (standing for ‘free
indices’ and ‘noise indices’), we define the linear map I: �⊗( → H: (�⊗( 5 )
where : = |(= | which acts on elements of the form ℎ = ℎ 5 ⊗ ℎ= by

I(ℎ 5 ⊗ ℎ=) = ℎ 5
√
:!�: (Πℎ=) , : = |(= | ,

where �: was defined in (2.8) and the symmetrisation operator Π was defined just
before. Here, we identify ℎ= with an element of �⊗: by using some enumeration
of (=. The choice of enumeration does not matter thanks to the presence of Π.
Graphically, we denote I(ℎ) by colouring the elements of (= in red. This is
consistent with our notation so far since, in the case when (= = ∅, I is the identity
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under the canonical identificationH0(�⊗( 5 ) ' �⊗(. Note thatI is not an isometry
in general due to the presence both of the projection Π and of the factor

√
:!. On

the other hand, I is arguably more “natural” in the sense that

I
(⊗
G∈(

48(G)
)
= Φ:

⊗
G∈( 5

48(G) , (8.3)

where : is such that : 9 = |{G ∈ (= : 8(G) = 9}|, without any additional combinato-
rial factor.

The power of these notations can already be appreciated by noting that the
Malliavin derivative D of an element depicted by such a graphical notation is
obtained simply by adding up all ways of turning one red node black. Conversely, to
define the divergence X of an element of H: (�⊗(), one needs to specify an element
G ∈ ( so that H: (�⊗() ' H: (� ⊗ �⊗(G ), where (G = ( \ {G}. The divergence
operator X : H: (�⊗�⊗(G ) → H: (�⊗(G ) is then obtained in our graphical notations
by simply colouring the node G red. The fact that XD = : on H: is then immediate:
an element 5 ∈ H: is depicted by a graph with : red nodes and no black nodes;
D 5 is obtained by summing over all : ways of turning one of these nodes black,
while XD 5 is then obtained by turning the single black node back red again, thus
yielding : times the original graph.

We have the following product formula which should be interpreted as a
far-reaching generalisation of Wick’s theorem for computing the moments of a
Gaussian
Proposition 8.2 Let ( and (̄ be finite sets and let ℎ ∈ �⊗(, ℎ̄ ∈ �⊗(̄. Then, one
has

I(ℎ) ⊗ I( ℎ̄) =
∑

P∈%((=,(̄=)
I

(
TrP(ℎ ⊗ ℎ̄)

)
, (8.4)

where %((=, (̄=) denotes all collections of disjoint pairs {G, H} ⊂ (= t (̄= such that
G ∈ (=, H ∈ (̄=.

Remark 8.3 Here, if ( = ( 5 t (= as before and similarly for (̄, we have implicitly
set (( t (̄) 5 = ( 5 t (̄ 5 and similarly for the noise indices. Note that the tracing
operation removes some noise indices but does not affect the free indices, so that
both sides are random variables taking values in �⊗( 5 ⊗ �⊗(̄ 5 ' �⊗(( 5 t(̄ 5 ) .

The graphical interpretation of Proposition 8.2 is that the product of two graphs
is obtained by iterating over all ways of juxtaposing them and then “contracting”
any number of red nodes from the first graph with an identical number of red nodes
from the second graph. For example, one has

D · E = D E + 3 D E
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+ 3 D E + 6 D E

where we made use of indistinguishability. Before we proceed to the proof of
Proposition 8.2, we provide the following preliminary result on the product of
Hermite polynomials.

Lemma 8.4 For =, < ≥ 0, one has

�= (G)�< (G) =
∑
?≥0

� (<, =; ?)�=+<−2? (G) , � (<, =; ?) = ?!
(
<

?

) (
=

?

)
, (8.5)

with the convention that � (<, =; ?) = 0 whenever ? > min{<, =}.

Proof. We fix = and proceed by induction on <. The case < = 0 is trivial, while
the case < = 1 reads

�1 · �= = �=+1 + =�=−1 ,
which is immediate from �1(G) = G, combined with (2.3) and (2.5). Since = is
fixed, we write �<;?

= = � (<, =; ?) and we note that these coefficients satisfy the
recursions

�
<;?−1
= = �

<+1;?
=

?

(< + 1) (= − ? + 1) ,

<�
<−1;?−1
= = �

<+1;?
=

?(< + 1 − ?)
(< + 1) (= − ? + 1) ,

�
<;?
= = �

<+1;?
=

< + 1 − ?
< + 1

.

(8.6)

(This also holds for ? = 0 if we use the convention that �<;?
= = 0 for ? < 0.) We

now assume that (8.5) holds for some < (and all smaller values) and we write

�=�<+1 = �=
(
�1�< − <�<−1

)
=

∑
?≥0

�
<;?
= �1�=+<−2? − <

∑
?≥0

�
<−1;?
= �=+<−1−2?

=
∑
?≥0

�
<;?
= �=+<+1−2? +

∑
?≥0
(= + < − 2?)�<;?

= �=+<−1−2?

− <
∑
?≥0

�
<−1;?
= �=+<−1−2?

=
∑
?≥0

(
�
<;?
= + (2 + = + < − 2?)�<;?−1

= − <�<−1;?−1
=

)
�=+<+1−2? .

Combining this with (8.6) completes the proof.
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Proof of Proposition 8.2. In view of (8.3) and the definition of TrP, we can assume
without loss of generality that ( = (= and similarly for (̄. Since both sides of (8.4)
are linear in ℎ and ℎ̄, it suffices to show that the formula holds for ℎ and ℎ̄ of the
form

ℎ =
⊗
G∈(

48(G) , ℎ̄ =
⊗
H∈(̄

4 9 (G) ,

for some fixed orthonormal basis {4=}=∈N and functions 8 : ( → N, 9 : (̄ → N.
Write : (8) : N→ N for the function such that

: (8) 9 = |{G ∈ ( : 8(G) = 9}| ,

and similarly for : ( 9) (but with ( replaced by (̄).
Since this basis is orthonormal, the only terms that contribute to the right-hand

side of (8.4) are those pairings P such that

8(G) = 9 (H) , ∀{G, H} ∈ P .

Call such a pairing admissible. Every admissible pairing P then yields a function
: (P) : N→ N by setting : (P)ℓ = |{{G, H} ∈ P : 8(G) = ℓ}|. With this notation,
and in view of (8.3) and (8.1), one has

I
(
TrP(ℎ ⊗ ℎ̄)

)
= Φ: (8)+: ( 9)−2: (P)

if P is admissible, and 0 otherwise.
Given ? : N→ N, we see that the number of pairings P such that : (P) = ?

is precisely given by ?!
(: (8)
?

) (: ( 9)
?

)
. This is because it is determined by, for every

ℓ ∈ N, first choosing ?ℓ elements among the : (8)ℓ indices G ∈ ( with 8(G) = ℓ, then
choosing ?ℓ elements among the : ( 9)ℓ indices G ∈ (̄ with 9 (G) = ℓ, and finally
choosing one of the ?ℓ! ways of pairing these indices up. As a consequence, the
right-hand side of (8.5) is given by∑

? : N→N

?!
(
: (8)
?

) (
: ( 9)
?

)
Φ: (8)+: ( 9)−2? .

Since the left-hand side is given by Φ: (8) · Φ: ( 9) and in view of the definition (2.6)
of the Φ: , the claim immediately follows from Lemma 8.4.

Remark 8.5 A final, but important, remark before we can proceed with the proof
of the fourth moment theorem is the following. Recall that with our graphical
notation, a graph Γ containing only grey and black nodes represents a deterministic
element 5 ∈ �⊗(. The squared norm ‖ 5 ‖2 is then represented by the graph |Γ|2
obtained by taking two identical copies Γ1 and Γ2 of Γ and pairing up each one of
the black nodes of Γ1 with the corresponding node of Γ2. In particular, any graph
that can be obtained in this way necessarily represents a positive number.
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The following lemma which was obtained in [NP05] is now elementary.

Lemma 8.6 Let � ∈ H= for some = ≥ 2 with � ≠ 0. Then, there exists 2 > 0
depending only on = such that

E�4 − 3(E�2)2 ≥ 2
(
E‖D�‖4 −

(
E‖D�‖2

)2)
> 0 . (8.7)

Proof. Since � ∈ H=, we can represent it and its Malliavin derivative as

� = �

· · ·
, D� = = �

· · ·
.

As a consequence of Proposition 8.2, we then have

�2 = =! � �
... + = · =! � �

... + . . . + �

· · ·
�

· · ·
.

(8.8)
(Here, each line connecting two copies of � should be thought of as having a grey
node, but we don’t draw these.) Since the :th term in this sum belongs to the 2:th
Wiener chaos, they are all orthogonal.

Regarding ‖D�‖2, one also obtains a positive linear combination of the exact
same terms, but with slightly different combinatorial prefactors. Themain difference
however is that the last term is absent since taking the norm squared corresponds to
contracting the two black nodes, so one always has at least one contraction between
the two copies of �. In particular, this already shows why the second inequality in
(8.7) is strict when = ≥ 2: the second term in (8.8) is of the form I(6) for some
6 ∈ �⊗B2 with Tr 6 = =E�2. Since E�2 > 0, we conclude that one cannot have
6 = 0, so this term has strictly positive !2 norm.

Since the first term of (8.8) (including the factor =!) is nothing but E�2, we
conclude that there exists a constant 2 > 0 such that

E�4 ≥ (E�2)2 + 2
(
E‖D�‖4 −

(
E‖D�‖2

)2) + E(
�

· · ·
�

· · · )2
.

Denoting the last term in this expression by �, it therefore remains to show that
� ≥ 2(E�2)2. As a consequence of Proposition 8.2, we have

� ≥
=∑
?=0

(
=

?

)2
(=!)2�4

? ,
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with

�4
? =

� �

� �

,

where we have ? “vertical connections” between any two copies of � and = − ?
“diagonal connections”. Since each of these �4

? is positive by Remark 8.5 (just
“untwist” the picture by flipping the two copies of � on the right), we conclude that
� ≥ (=!)2(�4

0 + �
4
= ), but (=!)2�4

0 = (=!)2�4
= = (E�2)2, thus yielding the claim.

Note that since the last inequality in (8.7) is strict, this implies that H= itself
cannot contain any Gaussian random variable! We are now in a position to prove
the fourth moment theorem of [NP05]:
Theorem 8.7 Let = ≥ 2 and let {�: }:≥0 ∈ H= be a sequence of random variables
such that E�2

:
= 1 (say) for all : . Then, the �: converge in law to N(0, 1) if and

only if lim:→∞ E�4
:
= 3.

Proof. We follow the exposition of [NOL08]. Since all moments of the sequence
�: are uniformly bounded by (7.2), the necessity of E�4

:
→ 3 is immediate. For

the converse implication, we note first that by tightness we can assume that the �:
have some limit in law (modulo extraction of a subsequence which we again denote
by �: ) and we write

i(C) = lim
:→∞

i: (C) = lim
:→∞

E48C�: ,

for its Fourier transform, so it remains to show that i(C) = 4−C2/2. Note that i
is differentiable and ¤i = lim:→∞ ¤i: locally uniformly as a consequence of the
boundedness of the moments of �: . Since we know that i(0) = 1, it is therefore
sufficient to show that lim:→∞

(
¤i: (C) + Ci: (C)

)
= 0.

Since Δ�: = =�: we then have

¤i: (C) = 8E
(
�:4

8C�:
)
=
8

=
E
(
(XD�: )48C�:

)
=
8

=
E〈D�: ,D48C�: 〉

= − C
=
E
(
‖D�: ‖248C�:

)
.

Since E‖D�: ‖2 = =, we conclude that

| ¤i: (C) + Ci: (C) | =
C

=
|E

( (
‖D�: ‖2 − =

)
48C�:

)
|

≤ C

=
|E

( (
‖D�: ‖2 − =

)2) |1/2 . C

=

√
E�4

:
− 3 ,

where we used Lemma 8.6 in the last bound, whence the claim follows at once.
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9 Construction of the Φ4
2 field

We now sketch the argument given by Nelson in [Nel66], showing how the
hypercontractive bounds of the previous section can be used to construct Φ4

2
Euclidean field theory. The goal is to build a measure P on the space D′(T2) of
distributions on the two-dimensional torus which is formally given by

P(3Φ) ∝ exp
(
−1

2

∫
|∇Φ(G) |2 3G −

∫
|Φ(G) |4 3G

)
“3Φ” .

This expression is of course completely nonsensical in many respects, not least
because there is no “Lebesgue measure” in infinite dimensions. However, the
first part in this description is quadratic and should therefore define a Gaussian
measure. Recalling that the Gaussian measure with covariance � has density
exp(−1

2 〈G, �
−1G〉) with respect to Lebesgue measure, this suggests that we should

rewrite P as
P(3Φ) ∝ exp

(
−

∫
|Φ(G) |4 3G

)
Q(3Φ) , (9.1)

whereQ is Gaussian with covariance given by the inverse of the Laplacian. In other
words, under Q, the Fourier modes of Φ are distributed as independent Gaussian
random variables (besides the reality constraint) with Φ̂(:) having variance 1/|: |2.
In order to simplify things, we furthermore postulate that Φ̂(0) = 0.

The measure Q is the law of the free field, which also plays a crucial role in the
study of critical phenomena in two dimensions due to its remarkable invariance
properties under conformal transformations. However, it turns out that (9.1) is
unfortunately still nonsensical. Indeed, for this to make sense, one would like at the
very least to have Φ ∈ !4 almost surely. It turns out that one does not even have
Φ ∈ !2 since, at least formally, one has

E‖Φ‖2
!2 =

∑
:

E|Φ̂(:) |2 =
∑
:≠0

1
|: |2

= ∞ ,

since we are in two dimensions.
Denote now by � the Green’s function for the Laplacian. One way of defining

� is the following. Take a cut-off function j : R2 → R which is smooth, positive,
compactly supported, and such that j(:) = 1 for |: | ≤ 1.

� (G) = lim
#→∞

�# (G) , �# (G) =
∑
:≠0

i(:/#) |: |−248:G .

It is a standard result that this limit exists, does not depend on the choice of j,
and is such that � (G) ∼ − 1

2c log |G | for small values of G, and is smooth otherwise.
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Furthermore, the function �# has the property that |�# (G) | . log |G |−1 ∧ log #
for all G. Finally, one has

|� (G) − �# (G) | . | log # |G | | ∧ 1
#2 |G |2

.

Note now that for every # , one can find fields Φ# and Ψ# that are independent and
with independent Gaussian Fourier coefficients such that

E|Φ̂# (:) |2 = i(:/#) |: |−2 , E|Ψ̂# (:) |2 =
(
1 − i(:/#)

)
|: |−2 .

One then has Φ# +Ψ#
law
= Φ with Φ a free field. We can furthermore choose Φ# to

be a function of Φ by simply setting

Φ̂# (:) =
√
i(:/#)Φ̂(:) . (9.2)

Furthermore, Ψ# is “small” in some sense to be made precise and Φ# is almost
surely a smooth Gaussian field with covariance �# .

Note however that �2
#

def
= E|Φ# (G) |2 = �# (0) ∼ log # as # → ∞. The idea

now is to reinterpret the quantity Φ4 appearing in (9.1) as a “Wick power” which is
defined in terms of the 4th Hermite polynomial by

:Φ# (G)4: def
= �4

#�4(Φ# (G)/�# ) . (9.3)

The point here is that by the defining properties of the Hermite polynomials, one
has E :Φ# (G)4: = 0. Furthermore, and even more importantly, one can easily verify
from a simple calculation using Wick’s formula that

E
(
:Φ# (G)4: :Φ# (H)4:

)
= 24�4

# (G − H) .

In particular, setting
-#

def
=

∫
T2

:Φ# (G)4: 3G ,

one has
E-2

# = 24
∫

T2

∫
T2
�4
# (G − H) 3G 3H ,

which is uniformly bounded as # →∞. Furthermore, by (9.3), -# is an element
of the fourth homogeneous Wiener chaos H4 on the Gaussian probability space
generated by Φ. It is now a simple exercise to show that there exists a random
variable - belonging to H4 such that lim#→∞ -# = - in !2, and therefore in every
!? by (7.2). At this stage, we would like to define our measure P by

P(3Φ) ∝ exp(−- (Φ))Q(3Φ) , (9.4)
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with - given by the finite random variable we just constructed.
The problem with this is that although |Φ# (G) |4 is obviously bounded from

below, uniformly in # , :Φ# (H)4: is not! Indeed, the best one can do is

:Φ# (H)4: =
(
Φ# (H)2 − 3�2

#

)2 − 6�4
# ≥ −6�4

# ∼ −2(log #)2 ,

for some constant 2 > 0 (actually 2 = 3
2c2 ), so that

-# ≥ −2(log #)2 . (9.5)

In order to make sense of (9.4) however, we would like to show that the random
variable exp(−-) is integrable. This is where the optimal bound (7.2) plays a
crucial role. The idea of Nelson is to exploit the decomposition Φ# + Ψ#

law
= Φ

together with Lemma 2.2 to write

-
law
= -# + .# ,

.#
def
= 4

∫
T2

:Φ# (G)3::Ψ# (G): 3G + 6
∫

T2
:Φ# (G)2::Ψ# (G)2: 3G

+ 4
∫

T2
:Φ# (G)::Ψ# (G)3: 3G +

∫
T2

:Ψ# (G)4: 3G = . (1)
#
+ . . . + . (4)

#
.

Note now that, setting �̃# = � − �# , one has

E|. (1)
#
|2 = 96

∫
T2

∫
T2
�3
# (G − H) �̃# (G − H) 3G 3H .

| log # |4
#2 .

Analogous bounds can be obtained for the other . (8)
#
. Combining this with (7.2)

and the fact that .# belongs to the chaos of order 4, we obtain the existence of finite
constants 2 and � such that

E|.# |2? ≤
2??4? | log # |4?

#2? ≤ � ?
4?

# ?
,

uniformly over # ≥ � and ? ≥ 1. In the sequel, the values of the constants 2 and
� are allowed to change from expression to expression. We conclude that

P(- < − ) = P(-# + .# < − ) ≤ P
(
.# ≤ 2(log #)2 −  

)
≤ P

(
|.# | ≥  − 2(log #)2

)
≤ E|.# |2?
( − 2(log #)2)?

≤ �?4?

# ? ( − 2(log #)2)?
,
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provided that 2(log #)2 ≤  and # ≥ �. We now exploit our freedom to choose
both # and ?. First, we choose # such that 2(log #)2 −  ∈ [1, 2] (this is always
possible if  is large enough), so that

P(- < − ) ≤ �?
4?

# ?
≤ � (?4−2

√
 )4? .

We now choose ? = 42̃
√
 for some 2̃ < 2, so that eventually

P(- < − ) ≤ � exp
(
−242̃

√
 
)
.

We can rewrite this as

P(exp(−-) > ") ≤ � exp
(
−242̃
√

log" )
.

In particular, the right hand side of this expression is smaller than any inverse power
of " , so that exp(−-) is indeed integrable as claimed.
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