Ergodic Properties of Markov Processes

Exercises for week 2

Exercise 1 Show that if \mathscr{F}' is the trivial σ -algebra, *i.e.* $\mathscr{F}' = \{\phi, \Omega\}$, then $X' = \mathbf{E}(X | \mathscr{F}')$ is constant and equal to the expectation of X.

Exercise 2 Show that continuous functions are Borel-measurable. Give an example of a Borel-measurable function from \mathbf{R} to \mathbf{R} which is not continuous.

Exercise 3 Let $\Omega = [0,1]^2$, $\mathbf{P}(dx, dy) = (x + y) dx dy$, and let (X, Y) be a pair of random variables defined by X(x, y) = x and Y(x, y) = y. Let \mathscr{F}_Y be the σ -algebra generated by Y. Find an explicit expression for $\mathbf{E}(X | \mathscr{F}_Y)$ and give a function f such that $\mathbf{E}(X | \mathscr{F}_Y) = f \circ Y$.

Exercise 4 Show that $\mathscr{F}_1 \vee \mathscr{F}_2$ can equivalently be characterised by the expressions:

- $\mathscr{F}_1 \lor \mathscr{F}_2 = \sigma \{ A \cup B \mid A \in \mathscr{F}_1 \text{ and } B \in \mathscr{F}_2 \},\$
- $\mathscr{F}_1 \lor \mathscr{F}_2 = \sigma \{ A \cap B \mid A \in \mathscr{F}_1 \text{ and } B \in \mathscr{F}_2 \},\$

where $\sigma \mathscr{G}$ denotes the smallest σ -algebra containing \mathscr{G} .

Exercise 5 Let $\Omega = \{1, \ldots, 6\}^3$. We interpret elements of Ω as the possible outcomes of throwing a dice three times. Describe the σ -algebra \mathscr{F} corresponding to knowing the value of the largest of the three throws.

* Exercise 6 Show the following elementary properties of conditional expectations:

- If $\mathscr{F}_1 \subset \mathscr{F}_2$, then $\mathbf{E}(\mathbf{E}(X \mid \mathscr{F}_2) \mid \mathscr{F}_1) = \mathbf{E}(\mathbf{E}(X \mid \mathscr{F}_1) \mid \mathscr{F}_2) = \mathbf{E}(X \mid \mathscr{F}_1)$.
- Find an example that shows that in general $\mathbf{E}(\mathbf{E}(X \mid \mathscr{F}_2) \mid \mathscr{F}_1) \neq \mathbf{E}(\mathbf{E}(X \mid \mathscr{F}_1) \mid \mathscr{F}_2)$.
- If Y is \mathscr{F}_1 -measurable, then $\mathbf{E}(XY | \mathscr{F}_1) = Y \mathbf{E}(X | \mathscr{F}_1)$.
- If $\mathscr{F}_1 \subset \mathscr{F}_2$, and Y is \mathscr{F}_2 -measurable then $\mathbf{E}(Y\mathbf{E}(X \mid \mathscr{F}_2) \mid \mathscr{F}_1) = \mathbf{E}(XY \mid \mathscr{F}_1)$.

Hint For the first part, use the fact that if $\mathscr{F}_1 \subset \mathscr{F}_2$, then any \mathscr{F}_1 -measurable function is also \mathscr{F}_2 -measurable.

** Exercise 7 You have probably seen Lebesgue measurable functions defined through the property that $f^{-1}(A)$ is Lebesgue measurable for every open set A. Show that every Borel measurable function is also Lebesgue measurable but that the converse is not true in the case of functions from **R** to **R**.

Show that if $f : \mathcal{X} \to \mathcal{Y}$ and $g : \mathcal{Y} \to \mathcal{Z}$ are Borel measurable functions, then $g \circ f$ is also Borel measurable. This property is *not* true for Lebesgue measurable functions. Try to find a *continuous* function $f: \mathbf{R} \to \mathbf{R}$ and a Lebesgue measurable function g (you can take an indicator function for g) such that $g \circ f$ is not Lebesgue measurable.

Hint: Remember that every measurable set A of positive Lebesgue measure contains a subset $A' \subset A$ which is *not* Lebesgue measurable. (Take this statement for granted if you haven't seen it before.) Another useful ingredient for the construction of f is the Cantor function D (also called Devil's

staircase), depicted here. Use the fact that if C is the Cantor set, then D(C) is a set of Lebesgue measure 1.